Expression of glutamine synthetase and glutamate dehydrogenase in the latent phase and chronic phase in the kainate model of temporal lobe epilepsy

Expression of glutamine synthetase and glutamate dehydrogenase in the latent phase and chronic... It has been suggested that astrocytic glutamate release or perturbed glutamate metabolism contributes to the proneness to epileptic seizures. Here we investigated whether astrocytic contents of the major glutamate degrading enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) decreases on moving from the latent phase (prior to seizures) to the chronic phase (after onset of seizures) in the kainate (KA) model of temporal lobe epilepsy. Western blotting and immunogold analysis of hippocampal formation indicated similar levels of GDH in the latent and chronic phases of KA injected rats and in corresponding controls. In contrast, the level of GS was increased in the latent phase compared with controls, as assessed by Western blots of whole hippocampal formation and subregions. The increase in GS paralleled that of glial fibrillary acidic protein (GFAP). Compared with the latent phase, the chronic phase revealed a lower level of GS (approaching control levels) but an unchanged GFAP content. The decrease in GS from latent to chronic phase was significant in whole hippocampal formation, dentate gyrus and CA3. It is concluded that kainate treated rats show an initial increase in GS, pari passu with the increase in GFAP, and a secondary decrease in GS that is not accompanied by a similar loss of GFAP. In a situation where glutamate catabolism is in high demand the secondary reduction in GS level may be sufficient to contribute to the seizure proneness that develops between the latent and chronic phases. © 2008 Wiley‐Liss, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Glia Wiley

Expression of glutamine synthetase and glutamate dehydrogenase in the latent phase and chronic phase in the kainate model of temporal lobe epilepsy

Loading next page...
 
/lp/wiley/expression-of-glutamine-synthetase-and-glutamate-dehydrogenase-in-the-ztZjwKt9jH
Publisher
Wiley
Copyright
Copyright © 2008 Wiley‐Liss, Inc.
ISSN
0894-1491
eISSN
1098-1136
DOI
10.1002/glia.20659
pmid
18381650
Publisher site
See Article on Publisher Site

Abstract

It has been suggested that astrocytic glutamate release or perturbed glutamate metabolism contributes to the proneness to epileptic seizures. Here we investigated whether astrocytic contents of the major glutamate degrading enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) decreases on moving from the latent phase (prior to seizures) to the chronic phase (after onset of seizures) in the kainate (KA) model of temporal lobe epilepsy. Western blotting and immunogold analysis of hippocampal formation indicated similar levels of GDH in the latent and chronic phases of KA injected rats and in corresponding controls. In contrast, the level of GS was increased in the latent phase compared with controls, as assessed by Western blots of whole hippocampal formation and subregions. The increase in GS paralleled that of glial fibrillary acidic protein (GFAP). Compared with the latent phase, the chronic phase revealed a lower level of GS (approaching control levels) but an unchanged GFAP content. The decrease in GS from latent to chronic phase was significant in whole hippocampal formation, dentate gyrus and CA3. It is concluded that kainate treated rats show an initial increase in GS, pari passu with the increase in GFAP, and a secondary decrease in GS that is not accompanied by a similar loss of GFAP. In a situation where glutamate catabolism is in high demand the secondary reduction in GS level may be sufficient to contribute to the seizure proneness that develops between the latent and chronic phases. © 2008 Wiley‐Liss, Inc.

Journal

GliaWiley

Published: Jun 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off