Expression of basic genes involved in tea polyphenol synthesis in relation to accumulation of catechins and total tea polyphenols

Expression of basic genes involved in tea polyphenol synthesis in relation to accumulation of... Catechins, a group of polyphenolic compounds in the green leaf of tea (Camellia sinensis (L.) O. Kuntze), are major components conferring quality attributes and health benefits on processed tea. Expression patterns of the basic genes related to accumulation of the catechins and total polyphenols at different stages of tea leaf development and their relationship with catechin concentration were investigated by reverse transcriptase polymerase chain reaction and high‐performance liquid chromatographic methods. The results showed that the concentration of total catechins and polyphenols in leaves at different stages of development declined with age of the leaf but changes of the individual catechins varied, with a general decrease in catechin gallate and epigallocatechin gallate and increase in epigallocatechin and epicatechin gallate. Genes of phenylalanine ammonium lyase (PAL), dihydroflavonol reductase (DFR) and three chalcone synthase genes (CHS1, CHS2, CHS3) were highly expressed in bud, first leaf and second leaf but were barely detected in mature leaves. The expression of DFR, a downstream gene in the catechin biosynthesis pathway, was closely related to the concentration of total catechins and polyphenols in various stages of leaf development. Copyright © 2005 Society of Chemical Industry http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Science of Food and Agriculture Wiley

Expression of basic genes involved in tea polyphenol synthesis in relation to accumulation of catechins and total tea polyphenols

Loading next page...
 
/lp/wiley/expression-of-basic-genes-involved-in-tea-polyphenol-synthesis-in-bDTFTiqdzD
Publisher
Wiley
Copyright
Copyright © 2005 Society of Chemical Industry
ISSN
0022-5142
eISSN
1097-0010
D.O.I.
10.1002/jsfa.2368
Publisher site
See Article on Publisher Site

Abstract

Catechins, a group of polyphenolic compounds in the green leaf of tea (Camellia sinensis (L.) O. Kuntze), are major components conferring quality attributes and health benefits on processed tea. Expression patterns of the basic genes related to accumulation of the catechins and total polyphenols at different stages of tea leaf development and their relationship with catechin concentration were investigated by reverse transcriptase polymerase chain reaction and high‐performance liquid chromatographic methods. The results showed that the concentration of total catechins and polyphenols in leaves at different stages of development declined with age of the leaf but changes of the individual catechins varied, with a general decrease in catechin gallate and epigallocatechin gallate and increase in epigallocatechin and epicatechin gallate. Genes of phenylalanine ammonium lyase (PAL), dihydroflavonol reductase (DFR) and three chalcone synthase genes (CHS1, CHS2, CHS3) were highly expressed in bud, first leaf and second leaf but were barely detected in mature leaves. The expression of DFR, a downstream gene in the catechin biosynthesis pathway, was closely related to the concentration of total catechins and polyphenols in various stages of leaf development. Copyright © 2005 Society of Chemical Industry

Journal

Journal of the Science of Food and AgricultureWiley

Published: Feb 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off