Exposure dating and glacial reconstruction at Mt. Field, Tasmania, Australia, identifies MIS 3 and MIS 2 glacial advances and climatic variability

Exposure dating and glacial reconstruction at Mt. Field, Tasmania, Australia, identifies MIS 3... Tasmania is important for understanding Quaternary climatic change because it is one of only three areas that experienced extensive mid‐latitude Southern Hemisphere glaciation and it lies in a dominantly oceanic environment at a great distance from Northern Hemisphere ice sheet feedbacks. We applied exposure dating using 36Cl to an extensive sequence of moraines from the last glacial at Mt. Field, Tasmania. Glaciers advanced at 41–44 ka during Marine oxygen Isotope Stage (MIS) 3 and at 18 ka during MIS 2. Both advances occurred in response to an ELA lowering greater than 1100 m below the present‐day mean summer freezing level, and a possible temperature reduction of 7–8°C. Deglaciation was rapid and complete by ca. 16 ka. The overall story emerging from studies of former Tasmanian glaciers is that the MIS 2 glaciation was of limited extent and that some glaciers were more extensive during earlier parts of the last glacial cycle. Copyright © 2006 John Wiley & Sons, Ltd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Quaternary Science Wiley

Exposure dating and glacial reconstruction at Mt. Field, Tasmania, Australia, identifies MIS 3 and MIS 2 glacial advances and climatic variability

Loading next page...
 
/lp/wiley/exposure-dating-and-glacial-reconstruction-at-mt-field-tasmania-nBPdpegAFo
Publisher
Wiley
Copyright
Copyright © 2006 John Wiley & Sons, Ltd.
ISSN
0267-8179
eISSN
1099-1417
DOI
10.1002/jqs.989
Publisher site
See Article on Publisher Site

Abstract

Tasmania is important for understanding Quaternary climatic change because it is one of only three areas that experienced extensive mid‐latitude Southern Hemisphere glaciation and it lies in a dominantly oceanic environment at a great distance from Northern Hemisphere ice sheet feedbacks. We applied exposure dating using 36Cl to an extensive sequence of moraines from the last glacial at Mt. Field, Tasmania. Glaciers advanced at 41–44 ka during Marine oxygen Isotope Stage (MIS) 3 and at 18 ka during MIS 2. Both advances occurred in response to an ELA lowering greater than 1100 m below the present‐day mean summer freezing level, and a possible temperature reduction of 7–8°C. Deglaciation was rapid and complete by ca. 16 ka. The overall story emerging from studies of former Tasmanian glaciers is that the MIS 2 glaciation was of limited extent and that some glaciers were more extensive during earlier parts of the last glacial cycle. Copyright © 2006 John Wiley & Sons, Ltd.

Journal

Journal of Quaternary ScienceWiley

Published: May 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off