Experimental Study of the Plasmasphere Boundary Layer Using MAGION 5 Data

Experimental Study of the Plasmasphere Boundary Layer Using MAGION 5 Data The in situ cold plasma measurements onboard MAGION 5 were carried out with very good time resolution, and this permitted to analyze thin plasmasphere boundary layer (PBL) near the plasmapause. In this layer the plasma density N is decreasing exponentially with L: N~exp((LPP − L)/WB), where WB corresponds to the characteristic width of the PBL, the distance in L within which the density varies by a factor of e, and LPP is the position of the plasmapause. The density in the boundary layer is inversely proportional to the volume of the unit magnetic flux tube, whereas its width is proportional to the volume of magnetic flux tube. The characteristic width of the PBL linearly depends on the time elapsed since the most recent maximum value of KP. Empirical relation for the dependence of the PBL width on most recent maximum value of KP and on the lapse time between this maximum and the plasmapause observations is proposed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Geophysical Research: Space Physics Wiley

Experimental Study of the Plasmasphere Boundary Layer Using MAGION 5 Data

Loading next page...
 
/lp/wiley/experimental-study-of-the-plasmasphere-boundary-layer-using-magion-5-C0sY0ErMMu
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
2169-9380
eISSN
2169-9402
D.O.I.
10.1002/2017JA024590
Publisher site
See Article on Publisher Site

Abstract

The in situ cold plasma measurements onboard MAGION 5 were carried out with very good time resolution, and this permitted to analyze thin plasmasphere boundary layer (PBL) near the plasmapause. In this layer the plasma density N is decreasing exponentially with L: N~exp((LPP − L)/WB), where WB corresponds to the characteristic width of the PBL, the distance in L within which the density varies by a factor of e, and LPP is the position of the plasmapause. The density in the boundary layer is inversely proportional to the volume of the unit magnetic flux tube, whereas its width is proportional to the volume of magnetic flux tube. The characteristic width of the PBL linearly depends on the time elapsed since the most recent maximum value of KP. Empirical relation for the dependence of the PBL width on most recent maximum value of KP and on the lapse time between this maximum and the plasmapause observations is proposed.

Journal

Journal of Geophysical Research: Space PhysicsWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off