Exciton‐Adjustable Interlayers for High Efficiency, Low Efficiency Roll‐Off, and Lifetime Improved Warm White Organic Light‐Emitting Diodes (WOLEDs) Based on a Delayed Fluorescence Assistant Host

Exciton‐Adjustable Interlayers for High Efficiency, Low Efficiency Roll‐Off, and Lifetime... Recently, a new route to achieve 100% internal quantum efficiency white organic light‐emitting diodes (WOLEDs) is proposed by utilizing noble‐metal‐free thermally activated delayed fluorescence (TADF) emitters due to the radiative contributions of triplet excitons by effective reverse intersystem crossing. However, a systematic understanding of their reliability and internal degradation mechanisms is still deficient. Here, it demonstrates high performance and operational stable purely organic fluorescent WOLEDs consisting of a TADF assistant host via a strategic exciton management by multi‐interlayers. By introducing such interlayers, carrier recombination zone could be controlled to suppress the generally unavoidable quenching of long‐range triplet excitons, successfully achieving remarkable external quantum efficiency of 15.1%, maximum power efficiency of 48.9 lm W−1, and extended LT50 lifetime (time to 50% of initial luminance of 1000 cd m−2) exceeding 2000 h. To this knowledge, this is the first pioneering work for realizing high efficiency, low efficiency roll‐off, and operational stable WOLEDs based on a TADF assistant host. The current findings also indicate that broadening the carrier recombination region in both interlayers and yellow emitting layer as well as restraining exciplex quenching at carrier blocking interface make significant roles on reduced efficiency roll‐off and enhanced operational lifetime. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Functional Materials Wiley

Exciton‐Adjustable Interlayers for High Efficiency, Low Efficiency Roll‐Off, and Lifetime Improved Warm White Organic Light‐Emitting Diodes (WOLEDs) Based on a Delayed Fluorescence Assistant Host

Loading next page...
 
/lp/wiley/exciton-adjustable-interlayers-for-high-efficiency-low-efficiency-roll-2wefc9woAp
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1616-301X
eISSN
1616-3028
D.O.I.
10.1002/adfm.201706922
Publisher site
See Article on Publisher Site

Abstract

Recently, a new route to achieve 100% internal quantum efficiency white organic light‐emitting diodes (WOLEDs) is proposed by utilizing noble‐metal‐free thermally activated delayed fluorescence (TADF) emitters due to the radiative contributions of triplet excitons by effective reverse intersystem crossing. However, a systematic understanding of their reliability and internal degradation mechanisms is still deficient. Here, it demonstrates high performance and operational stable purely organic fluorescent WOLEDs consisting of a TADF assistant host via a strategic exciton management by multi‐interlayers. By introducing such interlayers, carrier recombination zone could be controlled to suppress the generally unavoidable quenching of long‐range triplet excitons, successfully achieving remarkable external quantum efficiency of 15.1%, maximum power efficiency of 48.9 lm W−1, and extended LT50 lifetime (time to 50% of initial luminance of 1000 cd m−2) exceeding 2000 h. To this knowledge, this is the first pioneering work for realizing high efficiency, low efficiency roll‐off, and operational stable WOLEDs based on a TADF assistant host. The current findings also indicate that broadening the carrier recombination region in both interlayers and yellow emitting layer as well as restraining exciplex quenching at carrier blocking interface make significant roles on reduced efficiency roll‐off and enhanced operational lifetime.

Journal

Advanced Functional MaterialsWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off