Evaluation of the shape memory behavior of a poly(cyclooctene) based nanocomposite device

Evaluation of the shape memory behavior of a poly(cyclooctene) based nanocomposite device The objective of the present work is to investigate the electro‐activated shape memory behavior of a polycyclooctene (PCO) based nanocomposite device. At this aim, carbon black (CB) and exfoliated graphite nanoplatelets (xGnP) were melt compounded with a PCO matrix crosslinked with a dicumylperoxide content of 2 wt% and a total filler amount of 4 wt%. Electrical resistivity measurements on bulk materials evidenced a noticeable decrease of the electrical resistivity upon CB addition, while no synergistic effects were detected mixing CB and xGnP. Nanocomposite with a CB amount of 4 wt% revealed also a noticeable heating capability through Joule effect for voltage levels higher than 100 V. The subsequent characterization of an electro active shape memory device based on this composition demonstrated how it is possible to prepare a shape memory nanocomposite material able to completely recover its original shape after 100 s with a voltage of 90 V. The retention of the shape memory behavior after several (50) programming cycles was also demonstrated. POLYM. ENG. SCI., 58:430–437, 2018. © 2017 Society of Plastics Engineers http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Engineering & Science Wiley

Evaluation of the shape memory behavior of a poly(cyclooctene) based nanocomposite device

Loading next page...
 
/lp/wiley/evaluation-of-the-shape-memory-behavior-of-a-poly-cyclooctene-based-gmL0Rq2I0m
Publisher
Wiley
Copyright
© 2018 Society of Plastics Engineers
ISSN
0032-3888
eISSN
1548-2634
D.O.I.
10.1002/pen.24590
Publisher site
See Article on Publisher Site

Abstract

The objective of the present work is to investigate the electro‐activated shape memory behavior of a polycyclooctene (PCO) based nanocomposite device. At this aim, carbon black (CB) and exfoliated graphite nanoplatelets (xGnP) were melt compounded with a PCO matrix crosslinked with a dicumylperoxide content of 2 wt% and a total filler amount of 4 wt%. Electrical resistivity measurements on bulk materials evidenced a noticeable decrease of the electrical resistivity upon CB addition, while no synergistic effects were detected mixing CB and xGnP. Nanocomposite with a CB amount of 4 wt% revealed also a noticeable heating capability through Joule effect for voltage levels higher than 100 V. The subsequent characterization of an electro active shape memory device based on this composition demonstrated how it is possible to prepare a shape memory nanocomposite material able to completely recover its original shape after 100 s with a voltage of 90 V. The retention of the shape memory behavior after several (50) programming cycles was also demonstrated. POLYM. ENG. SCI., 58:430–437, 2018. © 2017 Society of Plastics Engineers

Journal

Polymer Engineering & ScienceWiley

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off