Evaluation of the shape memory behavior of a poly(cyclooctene) based nanocomposite device

Evaluation of the shape memory behavior of a poly(cyclooctene) based nanocomposite device The objective of the present work is to investigate the electro‐activated shape memory behavior of a polycyclooctene (PCO) based nanocomposite device. At this aim, carbon black (CB) and exfoliated graphite nanoplatelets (xGnP) were melt compounded with a PCO matrix crosslinked with a dicumylperoxide content of 2 wt% and a total filler amount of 4 wt%. Electrical resistivity measurements on bulk materials evidenced a noticeable decrease of the electrical resistivity upon CB addition, while no synergistic effects were detected mixing CB and xGnP. Nanocomposite with a CB amount of 4 wt% revealed also a noticeable heating capability through Joule effect for voltage levels higher than 100 V. The subsequent characterization of an electro active shape memory device based on this composition demonstrated how it is possible to prepare a shape memory nanocomposite material able to completely recover its original shape after 100 s with a voltage of 90 V. The retention of the shape memory behavior after several (50) programming cycles was also demonstrated. POLYM. ENG. SCI., 58:430–437, 2018. © 2017 Society of Plastics Engineers http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Engineering & Science Wiley

Evaluation of the shape memory behavior of a poly(cyclooctene) based nanocomposite device

Loading next page...
 
/lp/wiley/evaluation-of-the-shape-memory-behavior-of-a-poly-cyclooctene-based-gmL0Rq2I0m
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Society of Plastics Engineers
ISSN
0032-3888
eISSN
1548-2634
D.O.I.
10.1002/pen.24590
Publisher site
See Article on Publisher Site

Abstract

The objective of the present work is to investigate the electro‐activated shape memory behavior of a polycyclooctene (PCO) based nanocomposite device. At this aim, carbon black (CB) and exfoliated graphite nanoplatelets (xGnP) were melt compounded with a PCO matrix crosslinked with a dicumylperoxide content of 2 wt% and a total filler amount of 4 wt%. Electrical resistivity measurements on bulk materials evidenced a noticeable decrease of the electrical resistivity upon CB addition, while no synergistic effects were detected mixing CB and xGnP. Nanocomposite with a CB amount of 4 wt% revealed also a noticeable heating capability through Joule effect for voltage levels higher than 100 V. The subsequent characterization of an electro active shape memory device based on this composition demonstrated how it is possible to prepare a shape memory nanocomposite material able to completely recover its original shape after 100 s with a voltage of 90 V. The retention of the shape memory behavior after several (50) programming cycles was also demonstrated. POLYM. ENG. SCI., 58:430–437, 2018. © 2017 Society of Plastics Engineers

Journal

Polymer Engineering & ScienceWiley

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial