Evaluation of Museum Collection Data for Use in Biodiversity Assessment

Evaluation of Museum Collection Data for Use in Biodiversity Assessment Abstract: Natural‐history collections in museums contain data critical to decisions in biodiversity conservation. Collectively, these specimen‐based data describe the distributions of known taxa in time and space. As the most comprehensive, reliable source of knowledge for most described species, these records are potentially available to answer a wide range of conservation and research questions. Nevertheless, these data have shortcomings, notably geographic gaps, resulting mainly from the ad hoc nature of collecting effort. This problem has been frequently cited but rarely addressed in a systematic manner. We have developed a methodology to evaluate museum collection data, in particular the reliability of distributional data for narrow‐range taxa. We included only those taxa for which there were an appropriate number of records, expert verification of identifications, and acceptable locality accuracy. First, we compared the available data for the taxon of interest to the “background data,” comprised of records for those organisms likely to be captured by the same methods or by the same collectors as the taxon of interest. The “adequacy”of background sampling effort was assessed through calculation of statistics describing the separation, density, and clustering of points, and through generation of a sampling density contour surface. Geographical information systems (GIS) technology was then used to model predicted distributions of species based on abiotic (e.g., climatic and geological) data. The robustness of these predicted distributions can be tested iteratively or by bootstrapping. Together, these methods provide an objective means to assess the likelihood of the distributions obtained from museum collection records representing true distributions. Potentially, they could be used to evaluate any point data to be collated in species maps, biodiversity assessment, or similar applications requiring distributional information. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Conservation Biology Wiley

Evaluation of Museum Collection Data for Use in Biodiversity Assessment

Loading next page...
 
/lp/wiley/evaluation-of-museum-collection-data-for-use-in-biodiversity-jU0TdLHK8U
Publisher
Wiley
Copyright
Copyright © 2001 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0888-8892
eISSN
1523-1739
D.O.I.
10.1046/j.1523-1739.2001.015003648.x
Publisher site
See Article on Publisher Site

Abstract

Abstract: Natural‐history collections in museums contain data critical to decisions in biodiversity conservation. Collectively, these specimen‐based data describe the distributions of known taxa in time and space. As the most comprehensive, reliable source of knowledge for most described species, these records are potentially available to answer a wide range of conservation and research questions. Nevertheless, these data have shortcomings, notably geographic gaps, resulting mainly from the ad hoc nature of collecting effort. This problem has been frequently cited but rarely addressed in a systematic manner. We have developed a methodology to evaluate museum collection data, in particular the reliability of distributional data for narrow‐range taxa. We included only those taxa for which there were an appropriate number of records, expert verification of identifications, and acceptable locality accuracy. First, we compared the available data for the taxon of interest to the “background data,” comprised of records for those organisms likely to be captured by the same methods or by the same collectors as the taxon of interest. The “adequacy”of background sampling effort was assessed through calculation of statistics describing the separation, density, and clustering of points, and through generation of a sampling density contour surface. Geographical information systems (GIS) technology was then used to model predicted distributions of species based on abiotic (e.g., climatic and geological) data. The robustness of these predicted distributions can be tested iteratively or by bootstrapping. Together, these methods provide an objective means to assess the likelihood of the distributions obtained from museum collection records representing true distributions. Potentially, they could be used to evaluate any point data to be collated in species maps, biodiversity assessment, or similar applications requiring distributional information.

Journal

Conservation BiologyWiley

Published: Jun 7, 2001

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off