Evaluation of grain shear stresses required to initiate movement of particles in natural rivers

Evaluation of grain shear stresses required to initiate movement of particles in natural rivers Shear stresses were evaluated at different sites on two rivers. The first (the Rulles) is characterized by a pebbly bedload and a meandering bed with riffles and pools. The second (the Rouge Eau) has mainly a sandy rippled bed where meandering is well developed but also flat gravelly sectors without meandering system. Shear stresses calculated from friction velocities (τ*) using a redefined y1 roughness height parameter were compared with total shear stresses calculated from the energy grade line and the hydraulic radius (τ), Divergence between these shear stresses seems to increase in the presence of bedforms and large‐scale irregularities of the channel. The τ*/τ ratio is close to 0·5 in the gravelly sector of the Rouge Eau and reaches 0·65 in the riffles of the Rulles (generally located at the inflexion point of the meanders), while it is less than 0·3 in the pools of the same river (located in the loops) and only 0·2 in the sandy rippled sector of the Rouge Eau. Grain and bedform shear stresses were evaluated at these same sites by different methods. The grain shear stress (τ') represents on average 30 per cent of the total shear stress in the riffles of the Rulles and the gravelly sector of the Rouge Eau, but less than 15 per cent in the pools in the Rulles and the sandy sectors of the Rouge Eau. However, it emerges from experiments conducted with marked pebbles and in situ observations of erosion and transport of sandy and gravelly particles, that the grain shear stresses are underestimated and cannot explain the movements and modifications actually observed. Conversely, shear stresses calculated from friction velocities at the sites where erosion actually occurred (or failed to occur despite very high velocities) provide a better explanation of the observed movements. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Earth Surface Processes and Landforms Wiley

Evaluation of grain shear stresses required to initiate movement of particles in natural rivers

Earth Surface Processes and Landforms, Volume 15 (2) – Mar 1, 1990

Loading next page...
 
/lp/wiley/evaluation-of-grain-shear-stresses-required-to-initiate-movement-of-L9LEI6D0EF
Publisher
Wiley
Copyright
Copyright © 1990 John Wiley & Sons, Ltd
ISSN
0197-9337
eISSN
1096-9837
DOI
10.1002/esp.3290150204
Publisher site
See Article on Publisher Site

Abstract

Shear stresses were evaluated at different sites on two rivers. The first (the Rulles) is characterized by a pebbly bedload and a meandering bed with riffles and pools. The second (the Rouge Eau) has mainly a sandy rippled bed where meandering is well developed but also flat gravelly sectors without meandering system. Shear stresses calculated from friction velocities (τ*) using a redefined y1 roughness height parameter were compared with total shear stresses calculated from the energy grade line and the hydraulic radius (τ), Divergence between these shear stresses seems to increase in the presence of bedforms and large‐scale irregularities of the channel. The τ*/τ ratio is close to 0·5 in the gravelly sector of the Rouge Eau and reaches 0·65 in the riffles of the Rulles (generally located at the inflexion point of the meanders), while it is less than 0·3 in the pools of the same river (located in the loops) and only 0·2 in the sandy rippled sector of the Rouge Eau. Grain and bedform shear stresses were evaluated at these same sites by different methods. The grain shear stress (τ') represents on average 30 per cent of the total shear stress in the riffles of the Rulles and the gravelly sector of the Rouge Eau, but less than 15 per cent in the pools in the Rulles and the sandy sectors of the Rouge Eau. However, it emerges from experiments conducted with marked pebbles and in situ observations of erosion and transport of sandy and gravelly particles, that the grain shear stresses are underestimated and cannot explain the movements and modifications actually observed. Conversely, shear stresses calculated from friction velocities at the sites where erosion actually occurred (or failed to occur despite very high velocities) provide a better explanation of the observed movements.

Journal

Earth Surface Processes and LandformsWiley

Published: Mar 1, 1990

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off