Access the full text.
Sign up today, get DeepDyve free for 14 days.
S. Dokos, B. Smaill, A. Young, I. LeGrice (2002)
Shear properties of passive ventricular myocardium.American journal of physiology. Heart and circulatory physiology, 283 6
M. Zile, C. Baicu, W. Gaasch (2004)
Diastolic heart failure--abnormalities in active relaxation and passive stiffness of the left ventricle.The New England journal of medicine, 350 19
S. Papazoglou, J. Rump, J. Braun, I. Sack (2006)
Shear wave group velocity inversion in MR elastography of human skeletal muscleMagnetic Resonance in Medicine, 56
(2018)
Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method
A. Romano, J. Shirron, J. Bucaro (1998)
On the noninvasive determination of material parameters from a knowledge of elastic displacements theory and numerical simulationIEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 45
A. Manduca, T. Oliphant, M. Dresner, J. Mahowald, S. Kruse, E. Amromin, J. Felmlee, J. Greenleaf, R. Ehman (2001)
Magnetic resonance elastography: Non-invasive mapping of tissue elasticityMedical image analysis, 5 4
Dennis Tweten, R. Okamoto, John Schmidt, J. Garbow, P. Bayly (2015)
Estimation of material parameters from slow and fast shear waves in an incompressible, transversely isotropic material.Journal of biomechanics, 48 15
T. Elgeti, M. Laule, Nikola Kaufels, J. Schnorr, B. Hamm, A. Samani, J. Braun, I. Sack (2009)
Cardiac MR Elastography: Comparison with left ventricular pressure measurementJournal of Cardiovascular Magnetic Resonance, 11
A. Kolipaka, K. McGee, P. Araoz, K. Glaser, A. Manduca, A. Romano, R. Ehman (2009)
MR elastography as a method for the assessment of myocardial stiffness: Comparison with an established pressure–volume model in a left ventricular model of the heartMagnetic Resonance in Medicine, 62
A. Manduca, D. Lake, R. Ehman (2002)
Spatio-temporal Directional Filtering for Improved Inversion of MR Elastography ImagesMedical image analysis, 7 4
M. Green, M. Green, Guangqiang Geng, E. Qin, Ralph Sinkus, S. Gandevia, S. Gandevia, L. Bilston, L. Bilston (2013)
Measuring anisotropic muscle stiffness properties using elastographyNMR in Biomedicine, 26
I. Sack, J. Rump, T. Elgeti, A. Samani, J. Braun (2009)
MR elastography of the human heart: Noninvasive assessment of myocardial elasticity changes by shear wave amplitude variationsMagnetic Resonance in Medicine, 61
R. Muthupillai, D. Lomas, P. Rossman, James Greenleaf, A. Manduca, R. Ehman (1995)
Magnetic resonance elastography by direct visualization of propagating acoustic strain waves.Science, 269 5232
Jing Guo, S. Hirsch, M. Scheel, J. Braun, I. Sack (2016)
Three‐parameter shear wave inversion in MR elastography of incompressible transverse isotropic media: Application to in vivo lower leg musclesMagnetic Resonance in Medicine, 75
M. Grédiac, E. Toussaint, F. Pierron (2002)
Special virtual fields for the direct determination of material parameters with the virtual fields method. 1––Principle and definitionInternational Journal of Solids and Structures, 39
S. Avril, M. Bonnet, A. Bretelle, M. Grédiac, F. Hild, P. Ienny, F. Latourte, D. Lemosse, S. Pagano, E. Pagnacco, F. Pierron (2008)
Overview of Identification Methods of Mechanical Parameters Based on Full-field MeasurementsExperimental Mechanics, 48
K. Glaser, A. Manduca, R. Ehman (2012)
Review of MR elastography applications and recent developmentsJournal of Magnetic Resonance Imaging, 36
P. Wassenaar, Chethanya Eleswarpu, Samuel Schroeder, Xiaokui Mo, B. Raterman, R. White, A. Kolipaka (2016)
Measuring age‐dependent myocardial stiffness across the cardiac cycle using MR elastography: A reproducibility studyMagnetic Resonance in Medicine, 75
Jiahe Xi, Jiahe Xi, Pablo Lamata, Pablo Lamata, Steven Niederer, Steven Niederer, Sander Land, Sander Land, W. Shi, X. Zhuang, S. Ourselin, S. Duckett, A. Shetty, C. Rinaldi, D. Rueckert, R. Razavi, Nic Smith, Nic Smith (2012)
The estimation of patient-specific cardiac diastolic functions from clinical measurementsMedical image analysis, 17
John Schmidt, Dennis Tweten, A. Benegal, C. Walker, T. Portnoi, R. Okamoto, J. Garbow, P. Bayly (2016)
Magnetic resonance elastography of slow and fast shear waves illuminates differences in shear and tensile moduli in anisotropic tissue.Journal of biomechanics, 49 7
A. Romano, Jing Guo, T. Prokscha, T. Meyer, S. Hirsch, J. Braun, I. Sack, M. Scheel (2014)
In vivo waveguide elastography: Effects of neurodegeneration in patients with amyotrophic lateral sclerosisMagnetic Resonance in Medicine, 72
T. Elgeti, M. Beling, B. Hamm, J. Braun, I. Sack (2010)
Elasticity-based determination of isovolumetric phases in the human heartJournal of Cardiovascular Magnetic Resonance, 12
Aaron Anderson, E. Houten, M. McGarry, K. Paulsen, J. Holtrop, B. Sutton, J. Georgiadis, Curtis Johnson (2016)
Observation of direction-dependent mechanical properties in the human brain with multi-excitation MR elastography.Journal of the mechanical behavior of biomedical materials, 59
N. Connesson, E. Clayton, P. Bayly, F. Pierron (2013)
The Effects of Noise and Spatial Sampling on Identification of Material Parameters by Magnetic Resonance Elastography
I. LeGrice, B. Smaill, L. Chai, S. Edgar, J. Gavin, P. Hunter (1995)
Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog.The American journal of physiology, 269 2 Pt 2
A. Kolipaka, K. McGee, P. Araoz, K. Glaser, A. Manduca, R. Ehman (2009)
Evaluation of a rapid, multiphase MRE sequence in a heart‐simulating phantomMagnetic Resonance in Medicine, 62
T. Elgeti, M. Beling, B. Hamm, J. Braun, I. Sack (2010)
Cardiac Magnetic Resonance Elastography: Toward the Diagnosis of Abnormal Myocardial RelaxationInvestigative Radiology, 45
V. Wang, H. Lam, D. Ennis, B. Cowan, A. Young, M. Nash (2009)
Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and functionMedical image analysis, 13 5
Bogdan Dzyubak, S. Venkatesh, A. Manduca, K. Glaser, R. Ehman (2016)
Automated liver elasticity calculation for MR elastographyJournal of Magnetic Resonance Imaging, 43
E. Qin, R. Sinkus, Guangqiang Geng, Shaokoon Cheng, M. Green, Caroline Rae, L. Bilston (2013)
Combining MR elastography and diffusion tensor imaging for the assessment of anisotropic mechanical properties: A phantom studyJournal of Magnetic Resonance Imaging, 37
A. Leite-Moreira (2006)
Current perspectives in diastolic dysfunction and diastolic heart failureHeart, 92
F. Pierron, P. Bayly, R. Namani (2013)
Application of the Virtual Fields Method to Magnetic Resonance Elastography data
I. LeGrice, A. Pope, G. Sands, G. Whalley, R. Doughty, B. Smaill (2012)
Progression of myocardial remodeling and mechanical dysfunction in the spontaneously hypertensive rat.American journal of physiology. Heart and circulatory physiology, 303 11
Dennis Tweten, R. Okamoto, P. Bayly (2017)
Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: A computational studyMagnetic Resonance in Medicine, 78
S. Chatelin, M. Bernal, T. Deffieux, C. Papadacci, P. Flaud, A. Nahas, C. Boccara, J. Gennisson, M. Tanter, M. Pernot (2014)
Anisotropic polyvinyl alcohol hydrogel phantom for shear wave elastography in fibrous biological soft tissue: a multimodality characterizationPhysics in Medicine & Biology, 59
H. Gudbjartsson, S. Patz (1995)
The rician distribution of noisy mri dataMagnetic Resonance in Medicine, 34
M. Couade, M. Pernot, E. Messas, A. Bel, M. Ba, A. Hagège, M. Fink, M. Tanter (2011)
In Vivo Quantitative Mapping of Myocardial Stiffening and Transmural Anisotropy During the Cardiac CycleIEEE Transactions on Medical Imaging, 30
T. Elgeti, H. Tzschätzsch, S. Hirsch, D. Krefting, D. Klatt, T. Niendorf, J. Braun, I. Sack (2012)
Vibration‐synchronized magnetic resonance imaging for the detection of myocardial elasticity changesMagnetic Resonance in Medicine, 67
N. Connesson, E. Clayton, P. Bayly, Fabrice Pierron (2015)
Extension of the Optimised Virtual Fields Method to Estimate Viscoelastic Material Parameters from 3D Dynamic Displacement FieldsStrain, 51
S. Arunachalam, A. Arani, Francis Baffour, J. Rysavy, P. Rossman, K. Glaser, D. Lake, J. Trzasko, A. Manduca, K. McGee, R. Ehman, P. Araoz (2018)
Regional assessment of in vivo myocardial stiffness using 3D magnetic resonance elastography in a porcine model of myocardial infarctionMagnetic Resonance in Medicine, 79
A. Krishnamurthy, C. Villongco, J. Chuang, L. Frank, Vishal Nigam, E. Belezzuoli, P. Stark, D. Krummen, S. Narayan, J. Omens, A. McCulloch, Roy Kerckhoffs (2013)
Patient-specific models of cardiac biomechanicsJournal of computational physics, 244
R. Mazumder, Samuel Schroeder, Xiaokui Mo, B. Clymer, R. White, A. Kolipaka (2017)
In vivo quantification of myocardial stiffness in hypertensive porcine hearts using MR elastographyJournal of Magnetic Resonance Imaging, 45
S. Avril, M. Grédiac, F. Pierron (2004)
Sensitivity of the virtual fields method to noisy dataComputational Mechanics, 34
A. Romano, M. Scheel, S. Hirsch, J. Braun, I. Sack (2012)
In vivo waveguide elastography of white matter tracts in the human brainMagnetic Resonance in Medicine, 68
E. Qin, L. Jugé, S. Lambert, V. Paradis, R. Sinkus, L. Bilston (2014)
In vivo anisotropic mechanical properties of dystrophic skeletal muscles measured by anisotropic MR elastographic imaging: the mdx mouse model of muscular dystrophy.Radiology, 273 3
A. Kolipaka, K. McGee, A. Manduca, N. Anavekar, R. Ehman, P. Araoz (2011)
In vivo assessment of MR elastography‐derived effective end‐diastolic myocardial stiffness under different loading conditionsJournal of Magnetic Resonance Imaging, 33
S. Chatelin, I. Charpentier, Nadège Corbin, L. Meylheuc, J. Vappou (2016)
An automatic differentiation-based gradient method for inversion of the shear wave equation in magnetic resonance elastography: specific application in fibrous soft tissuesPhysics in Medicine & Biology, 61
A. Kolipaka, S. Aggarwal, K. McGee, N. Anavekar, A. Manduca, R. Ehman, P. Araoz (2012)
Magnetic resonance elastography as a method to estimate myocardial contractilityJournal of Magnetic Resonance Imaging, 36
R. Namani, Matthew Wood, S. Sakiyama-Elbert, P. Bayly (2009)
Anisotropic mechanical properties of magnetically aligned fibrin gels measured by magnetic resonance elastography.Journal of biomechanics, 42 13
Renee Miller, A. Kolipaka, M. Nash, A. Young (2018)
Relative identifiability of anisotropic properties from magnetic resonance elastographyNMR in Biomedicine, 31
R. Mazumder, Samuel Schroeder, Xiaokui Mo, A. Litsky, B. Clymer, R. White, A. Kolipaka (2017)
In vivo magnetic resonance elastography to estimate left ventricular stiffness in a myocardial infarction induced porcine modelJournal of Magnetic Resonance Imaging, 45
Yuan Feng, R. Okamoto, R. Namani, G. Genin, P. Bayly (2013)
Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter.Journal of the mechanical behavior of biomedical materials, 23
M. Grédiac, Fabrice Pierron, Stéphane Avril, Evelyne Toussaint (2006)
The Virtual Fields Method for Extracting Constitutive Parameters From Full‐Field Measurements: a ReviewStrain, 42
Ziying Yin, R. Magin, D. Klatt (2014)
Simultaneous MR elastography and diffusion acquisitions: Diffusion‐MRE (dMRE)Magnetic Resonance in Medicine, 71
D. Klatt, S. Papazoglou, J. Braun, I. Sack (2010)
Viscoelasticity-based MR elastography of skeletal musclePhysics in Medicine & Biology, 55
T. Elgeti, F. Knebel, R. Hättasch, B. Hamm, J. Braun, I. Sack (2014)
Shear-wave amplitudes measured with cardiac MR elastography for diagnosis of diastolic dysfunction.Radiology, 271 3
F Pierron, PV Bayly, R Namani (2013)
Application of Imaging Techniques to Mechanics of Materials and Structures
Magnetic resonance elastography (MRE) has been used to estimate isotropic myocardial stiffness. However, anisotropic stiffness estimates may give insight into structural changes that occur in the myocardium as a result of pathologies such as diastolic heart failure. The virtual fields method (VFM) has been proposed for estimating material stiffness from image data. This study applied the optimised VFM to identify transversely isotropic material properties from both simulated harmonic displacements in a left ventricular (LV) model with a fibre field measured from histology as well as isotropic phantom MRE data. Two material model formulations were implemented, estimating either 3 or 5 material properties. The 3‐parameter formulation writes the transversely isotropic constitutive relation in a way that dissociates the bulk modulus from other parameters. Accurate identification of transversely isotropic material properties in the LV model was shown to be dependent on the loading condition applied, amount of Gaussian noise in the signal, and frequency of excitation. Parameter sensitivity values showed that shear moduli are less sensitive to noise than the other parameters. This preliminary investigation showed the feasibility and limitations of using the VFM to identify transversely isotropic material properties from MRE images of a phantom as well as simulated harmonic displacements in an LV geometry.
International Journal for Numerical Methods in Biomedical Engineering – Wiley
Published: Jan 1, 2018
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.