Estimation of Systematic Errors in the GFS Using Analysis Increments

Estimation of Systematic Errors in the GFS Using Analysis Increments We estimate the effect of model deficiencies in the Global Forecast System that lead to systematic forecast errors, as a first step toward correcting them online (i.e., within the model) as in Danforth & Kalnay (2008a, 2008b). Since the analysis increments represent the corrections that new observations make on the 6 h forecast in the analysis cycle, we estimate the model bias corrections from the time average of the analysis increments divided by 6 h, assuming that initial model errors grow linearly and first ignoring the impact of observation bias. During 2012–2016, seasonal means of the 6 h model bias are generally robust despite changes in model resolution and data assimilation systems, and their broad continental scales explain their insensitivity to model resolution. The daily bias dominates the submonthly analysis increments and consists primarily of diurnal and semidiurnal components, also requiring a low dimensional correction. Analysis increments in 2015 and 2016 are reduced over oceans, which we attribute to improvements in the specification of the sea surface temperatures. These results provide support for future efforts to make online correction of the mean, seasonal, and diurnal and semidiurnal model biases of Global Forecast System to reduce both systematic and random errors, as suggested by Danforth & Kalnay (2008a, 2008b). It also raises the possibility that analysis increments could be used to provide guidance in testing new physical parameterizations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Geophysical Research: Atmospheres Wiley

Estimation of Systematic Errors in the GFS Using Analysis Increments

Loading next page...
 
/lp/wiley/estimation-of-systematic-errors-in-the-gfs-using-analysis-increments-oTi2Y0jZXa
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
2169-897X
eISSN
2169-8996
D.O.I.
10.1002/2017JD027423
Publisher site
See Article on Publisher Site

Abstract

We estimate the effect of model deficiencies in the Global Forecast System that lead to systematic forecast errors, as a first step toward correcting them online (i.e., within the model) as in Danforth & Kalnay (2008a, 2008b). Since the analysis increments represent the corrections that new observations make on the 6 h forecast in the analysis cycle, we estimate the model bias corrections from the time average of the analysis increments divided by 6 h, assuming that initial model errors grow linearly and first ignoring the impact of observation bias. During 2012–2016, seasonal means of the 6 h model bias are generally robust despite changes in model resolution and data assimilation systems, and their broad continental scales explain their insensitivity to model resolution. The daily bias dominates the submonthly analysis increments and consists primarily of diurnal and semidiurnal components, also requiring a low dimensional correction. Analysis increments in 2015 and 2016 are reduced over oceans, which we attribute to improvements in the specification of the sea surface temperatures. These results provide support for future efforts to make online correction of the mean, seasonal, and diurnal and semidiurnal model biases of Global Forecast System to reduce both systematic and random errors, as suggested by Danforth & Kalnay (2008a, 2008b). It also raises the possibility that analysis increments could be used to provide guidance in testing new physical parameterizations.

Journal

Journal of Geophysical Research: AtmospheresWiley

Published: Jan 16, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off