Establishing gene function by mutagenesis in Arabidopsis thaliana

Establishing gene function by mutagenesis in Arabidopsis thaliana Summary The nuclear genome of Arabidopsis thaliana was sequenced to near completion a few years ago, and ahead lies the challenge of understanding its meaning and discerning its potential. How many genes are there? What are they? What do they do? Computer algorithms combined with genome array technologies have proven efficient in addressing the first two questions as shown in a recent report (Yamada , 2003). However, assessing the function of every gene in every cell will require years of careful analyses of the phenotypes caused by mutations in each gene. Current progress in generating large numbers of molecular markers and near‐saturation insertion mutant collections has immensely facilitated functional genomics studies in Arabidopsis. In this review, we focus on how gene function can be revealed through the analysis of mutants by either forward or reverse genetics. These mutants generally fall into two distinct classes. The first class typically includes point mutations or small deletions derived from chemical or fast neutron mutagenesis whereas the second class includes insertions of transferred‐DNA or transposon elements. We describe the current methods that are used to identify the gene corresponding to these mutations, which can then be used as a probe to further dissect its function. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Plant Journal Wiley

Establishing gene function by mutagenesis in Arabidopsis thaliana

The Plant Journal, Volume 39 (5) – Sep 1, 2004

Loading next page...
 
/lp/wiley/establishing-gene-function-by-mutagenesis-in-arabidopsis-thaliana-K8mc0bDWRA
Publisher
Wiley
Copyright
Copyright © 2004 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0960-7412
eISSN
1365-313X
D.O.I.
10.1111/j.1365-313X.2004.02149.x
Publisher site
See Article on Publisher Site

Abstract

Summary The nuclear genome of Arabidopsis thaliana was sequenced to near completion a few years ago, and ahead lies the challenge of understanding its meaning and discerning its potential. How many genes are there? What are they? What do they do? Computer algorithms combined with genome array technologies have proven efficient in addressing the first two questions as shown in a recent report (Yamada , 2003). However, assessing the function of every gene in every cell will require years of careful analyses of the phenotypes caused by mutations in each gene. Current progress in generating large numbers of molecular markers and near‐saturation insertion mutant collections has immensely facilitated functional genomics studies in Arabidopsis. In this review, we focus on how gene function can be revealed through the analysis of mutants by either forward or reverse genetics. These mutants generally fall into two distinct classes. The first class typically includes point mutations or small deletions derived from chemical or fast neutron mutagenesis whereas the second class includes insertions of transferred‐DNA or transposon elements. We describe the current methods that are used to identify the gene corresponding to these mutations, which can then be used as a probe to further dissect its function.

Journal

The Plant JournalWiley

Published: Sep 1, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off