Error and uncertainty in habitat models

Error and uncertainty in habitat models Summary 1 Species distribution models (habitat models) relate the occurrence or abundance of a species to environmental and/or geographical predictors that then allow predictions to be mapped across an entire region. These models are used in a range of policy settings such as managing greenhouse gases, biosecurity threats and conservation planning. Prediction errors are almost ubiquitous in habitat models. An understanding of the source, magnitude and pattern of these errors is essential if the models are to be used transparently in decision making. 2 This study considered the sources of errors in habitat models. It divided them into two main classes, error resulting from data deficiencies and error introduced by the specification of the model. Common and important data errors included missing covariates, and samples of species’ occurrences that were small, biased or lack absences. These affected the types of models that could be developed and the probable errors that would occur. Almost all models had missing covariates, and this introduced significant spatial correlation in the errors of the analysis. 3 A challenging aspect of modelling is that species’ distributions are affected by processes operating in both environmental and geographical space. We differentiated between global (aspatial) and local (spatial) errors, and discussed how they arise and what can be done to alleviate their effects. 4 Synthesis and applications. This study brings together statistical and ecological thinking to consider the appropriate techniques for habitat modelling. Ecological theory suggests models capable of defining optima, while allowing for interactions between variables. Statistical considerations, including impacts of data errors, suggest models that deal with multimodality and discontinuity in response surfaces. Models are typically simple approximations of the true probability surface. We suggest the use of flexible regression techniques, and explain what makes such methods superior for ecological modelling. The most robust modelling approaches are likely to be those in which care is taken to match the model with knowledge of ecology, and in which each is allowed to inform the other. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Ecology Wiley

Error and uncertainty in habitat models

Journal of Applied Ecology, Volume 43 (3) – Jun 1, 2006

Loading next page...
 
/lp/wiley/error-and-uncertainty-in-habitat-models-Qy0I5703KS
Publisher
Wiley
Copyright
Copyright © 2006 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0021-8901
eISSN
1365-2664
DOI
10.1111/j.1365-2664.2006.01136.x
Publisher site
See Article on Publisher Site

Abstract

Summary 1 Species distribution models (habitat models) relate the occurrence or abundance of a species to environmental and/or geographical predictors that then allow predictions to be mapped across an entire region. These models are used in a range of policy settings such as managing greenhouse gases, biosecurity threats and conservation planning. Prediction errors are almost ubiquitous in habitat models. An understanding of the source, magnitude and pattern of these errors is essential if the models are to be used transparently in decision making. 2 This study considered the sources of errors in habitat models. It divided them into two main classes, error resulting from data deficiencies and error introduced by the specification of the model. Common and important data errors included missing covariates, and samples of species’ occurrences that were small, biased or lack absences. These affected the types of models that could be developed and the probable errors that would occur. Almost all models had missing covariates, and this introduced significant spatial correlation in the errors of the analysis. 3 A challenging aspect of modelling is that species’ distributions are affected by processes operating in both environmental and geographical space. We differentiated between global (aspatial) and local (spatial) errors, and discussed how they arise and what can be done to alleviate their effects. 4 Synthesis and applications. This study brings together statistical and ecological thinking to consider the appropriate techniques for habitat modelling. Ecological theory suggests models capable of defining optima, while allowing for interactions between variables. Statistical considerations, including impacts of data errors, suggest models that deal with multimodality and discontinuity in response surfaces. Models are typically simple approximations of the true probability surface. We suggest the use of flexible regression techniques, and explain what makes such methods superior for ecological modelling. The most robust modelling approaches are likely to be those in which care is taken to match the model with knowledge of ecology, and in which each is allowed to inform the other.

Journal

Journal of Applied EcologyWiley

Published: Jun 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off