Equine laminitis model: Lamellar histopathology seven days after induction with oligofructose

Equine laminitis model: Lamellar histopathology seven days after induction with oligofructose Summary Reasons for performing study: The histopathology of laminitis during its transition from the acute to the chronic phase has not been previously documented. Studying hoof lamellar tissues 7 days after induction of laminitis may provide insight into the intractable nature of the chronic phase of the disease. Objectives: To induce laminitis and investigate hoof wall lamellar tissues 7 days after dosing. Methods: Laminitis was induced using oligofructose in 6 normal Standardbred horses. The dorsal hoof lamellar tissues of these and 12 normal horses were processed and examined by light microscopy. Serial sections of a lamellar tip affected by laminitis were used to create a 3 dimensional reconstruction. Results: Transverse sections of dorsal hoof wall lamellae were significantly longer than normal. Many secondary epidermal lamellae were not connected to primary lamellae and existed as spherical or ovoid, discrete islands isolated in the lamellar dermis. The lamellar basement membrane was intact. Conclusions: Lamellar tissue has the ability to reorganise rapidly following an episode of acute laminitis. Although histopathological evidence of ongoing acute laminitis was absent by 7 days, there was marked disruption of lamellar architecture. Potential relevance: The architecture and subsequent strength of the resultant lamellar interface could be greatly influenced for the better by strategies that minimise mechanical displacement during the acute phase of laminitis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Equine Veterinary Journal Wiley

Equine laminitis model: Lamellar histopathology seven days after induction with oligofructose

Loading next page...
 
/lp/wiley/equine-laminitis-model-lamellar-histopathology-seven-days-after-pVpnzNySDW
Publisher site
See Article on Publisher Site

Abstract

Summary Reasons for performing study: The histopathology of laminitis during its transition from the acute to the chronic phase has not been previously documented. Studying hoof lamellar tissues 7 days after induction of laminitis may provide insight into the intractable nature of the chronic phase of the disease. Objectives: To induce laminitis and investigate hoof wall lamellar tissues 7 days after dosing. Methods: Laminitis was induced using oligofructose in 6 normal Standardbred horses. The dorsal hoof lamellar tissues of these and 12 normal horses were processed and examined by light microscopy. Serial sections of a lamellar tip affected by laminitis were used to create a 3 dimensional reconstruction. Results: Transverse sections of dorsal hoof wall lamellae were significantly longer than normal. Many secondary epidermal lamellae were not connected to primary lamellae and existed as spherical or ovoid, discrete islands isolated in the lamellar dermis. The lamellar basement membrane was intact. Conclusions: Lamellar tissue has the ability to reorganise rapidly following an episode of acute laminitis. Although histopathological evidence of ongoing acute laminitis was absent by 7 days, there was marked disruption of lamellar architecture. Potential relevance: The architecture and subsequent strength of the resultant lamellar interface could be greatly influenced for the better by strategies that minimise mechanical displacement during the acute phase of laminitis.

Journal

Equine Veterinary JournalWiley

Published: Nov 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off