Enzymatic degradation of hyaluronan hydrogels with different capacity for in situ bio‐mineralization

Enzymatic degradation of hyaluronan hydrogels with different capacity for in situ... In situ cross‐linked hyaluronan (HA) hydrogels with different capacities for biomineralization were prepared and their enzymatic degradation was monitored. Covalent incorporation of bisphosphonates (BPs) into HA hydrogel results in the increased stiffness of the hydrogel in comparison with the unmodified HA hydrogel of the same cross‐linking density. The rate of enzymatic degradation of HABP hydrogel was significantly lower than the rate of degradation of control HA hydrogel in vitro. This effect is observed only in the presence of calcium ions that strongly bind to the matrix‐anchored BP groups and promote further mineralization of the matrix. The degradation of the hydrogels was followed by noninvasive fluorescence measurements enabled after mild and chemoselective labeling of cross‐linkable HA derivatives with a fluorescent tag. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biopolymers Wiley

Enzymatic degradation of hyaluronan hydrogels with different capacity for in situ bio‐mineralization

Loading next page...
 
/lp/wiley/enzymatic-degradation-of-hyaluronan-hydrogels-with-different-capacity-uP3xmFq81e
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
0006-3525
eISSN
1097-0282
D.O.I.
10.1002/bip.23090
Publisher site
See Article on Publisher Site

Abstract

In situ cross‐linked hyaluronan (HA) hydrogels with different capacities for biomineralization were prepared and their enzymatic degradation was monitored. Covalent incorporation of bisphosphonates (BPs) into HA hydrogel results in the increased stiffness of the hydrogel in comparison with the unmodified HA hydrogel of the same cross‐linking density. The rate of enzymatic degradation of HABP hydrogel was significantly lower than the rate of degradation of control HA hydrogel in vitro. This effect is observed only in the presence of calcium ions that strongly bind to the matrix‐anchored BP groups and promote further mineralization of the matrix. The degradation of the hydrogels was followed by noninvasive fluorescence measurements enabled after mild and chemoselective labeling of cross‐linkable HA derivatives with a fluorescent tag.

Journal

BiopolymersWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off