Enzymatic degradation of hyaluronan hydrogels with different capacity for in situ bio‐mineralization

Enzymatic degradation of hyaluronan hydrogels with different capacity for in situ... In situ cross‐linked hyaluronan (HA) hydrogels with different capacities for biomineralization were prepared and their enzymatic degradation was monitored. Covalent incorporation of bisphosphonates (BPs) into HA hydrogel results in the increased stiffness of the hydrogel in comparison with the unmodified HA hydrogel of the same cross‐linking density. The rate of enzymatic degradation of HABP hydrogel was significantly lower than the rate of degradation of control HA hydrogel in vitro. This effect is observed only in the presence of calcium ions that strongly bind to the matrix‐anchored BP groups and promote further mineralization of the matrix. The degradation of the hydrogels was followed by noninvasive fluorescence measurements enabled after mild and chemoselective labeling of cross‐linkable HA derivatives with a fluorescent tag. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biopolymers Wiley

Enzymatic degradation of hyaluronan hydrogels with different capacity for in situ bio‐mineralization

Loading next page...
 
/lp/wiley/enzymatic-degradation-of-hyaluronan-hydrogels-with-different-capacity-uP3xmFq81e
Publisher
Wiley
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
0006-3525
eISSN
1097-0282
D.O.I.
10.1002/bip.23090
Publisher site
See Article on Publisher Site

Abstract

In situ cross‐linked hyaluronan (HA) hydrogels with different capacities for biomineralization were prepared and their enzymatic degradation was monitored. Covalent incorporation of bisphosphonates (BPs) into HA hydrogel results in the increased stiffness of the hydrogel in comparison with the unmodified HA hydrogel of the same cross‐linking density. The rate of enzymatic degradation of HABP hydrogel was significantly lower than the rate of degradation of control HA hydrogel in vitro. This effect is observed only in the presence of calcium ions that strongly bind to the matrix‐anchored BP groups and promote further mineralization of the matrix. The degradation of the hydrogels was followed by noninvasive fluorescence measurements enabled after mild and chemoselective labeling of cross‐linkable HA derivatives with a fluorescent tag.

Journal

BiopolymersWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off