Enkephalin hyperpolarizes interneurones in the rat hippocampus.

Enkephalin hyperpolarizes interneurones in the rat hippocampus. 1. Intracellular recordings were made from pyramidal cells and from electrophysiologically identified interneurones in the CA1 region of the hippocampal slice preparation from the rat. 2. Enkephalin blocked the hyperpolarization of pyramidal cells evoked by application of glutamate to synaptically coupled inhibitory interneurones. 3. Enkephalin hyperpolarized interneurones, most probably by increasing potassium conductance; this action was blocked by the opiate antagonist, naloxone. 4. Activation of gamma‐aminobutyric acid(B) receptors with baclofen in interneurones produced a similar hyperpolarization that was resistant to naloxone. 5. In addition to hyperpolarizing interneurones, enkephalin blocked the inhibitory postsynaptic potential recorded in these cells. 6. These results suggest that opiate receptors are selectively localized on inhibitory interneurones in the hippocampus and are coupled to potassium channels. Activation of these receptors causes a disinhibition of both pyramidal cells and inhibitory interneurones. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Physiology Wiley

Enkephalin hyperpolarizes interneurones in the rat hippocampus.

The Journal of Physiology, Volume 398 (1) – Apr 1, 1988

Loading next page...
 
/lp/wiley/enkephalin-hyperpolarizes-interneurones-in-the-rat-hippocampus-lcahdP3HAa
Publisher
Wiley
Copyright
© 2014 The Physiological Society
ISSN
0022-3751
eISSN
1469-7793
D.O.I.
10.1113/jphysiol.1988.sp017033
Publisher site
See Article on Publisher Site

Abstract

1. Intracellular recordings were made from pyramidal cells and from electrophysiologically identified interneurones in the CA1 region of the hippocampal slice preparation from the rat. 2. Enkephalin blocked the hyperpolarization of pyramidal cells evoked by application of glutamate to synaptically coupled inhibitory interneurones. 3. Enkephalin hyperpolarized interneurones, most probably by increasing potassium conductance; this action was blocked by the opiate antagonist, naloxone. 4. Activation of gamma‐aminobutyric acid(B) receptors with baclofen in interneurones produced a similar hyperpolarization that was resistant to naloxone. 5. In addition to hyperpolarizing interneurones, enkephalin blocked the inhibitory postsynaptic potential recorded in these cells. 6. These results suggest that opiate receptors are selectively localized on inhibitory interneurones in the hippocampus and are coupled to potassium channels. Activation of these receptors causes a disinhibition of both pyramidal cells and inhibitory interneurones.

Journal

The Journal of PhysiologyWiley

Published: Apr 1, 1988

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off