Enhancement of biocompatibility on aligned electrospun poly(3‐hydroxybutyrate) scaffold immobilized with laminin towards murine neuroblastoma Neuro2a cell line and rat brain‐derived neural stem cells (mNSCs)

Enhancement of biocompatibility on aligned electrospun poly(3‐hydroxybutyrate) scaffold... Electrospinning has been extensively used to construct tissue‐engineered scaffolds because of its ability to provide the fibrous scaffold with structurally analogous to the naturally occurring protein in the extracellular matrix of native tissues. In addition, the modification of scaffolds with bioactive molecules is beneficial as this can create an environment that consists of biochemical cues to further promote cell adhesion, proliferation, and differentiation. In the present contribution, we prepared and investigated the potential used of aligned electrospun poly(3‐hydroxybutyrate) (PHB) scaffold immobilized with bioactive molecule to serve as nervous scaffold. Laminin was successfully immobilized on the surface using covalent binding between functional groups of modified scaffolds and protein. The ability to use for neural regeneration was evaluated in vitro towards murine neuroblastoma Neuro2a cell line and mouse brain‐derived neural stem cells. The surface modification with laminin immobilized on the PHB fibrous scaffolds supported the attachment and promoted the proliferation of Neuro2a very wells. Despite the good attachment and proliferation of Neuro2a and mouse brain‐derived neural stem cells were not able to proliferate on the neat PHB, hydrolyzed PHB and laminin immobilized on hydrolyzed PHB fibrous scaffold. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymers for Advanced Technologies Wiley

Enhancement of biocompatibility on aligned electrospun poly(3‐hydroxybutyrate) scaffold immobilized with laminin towards murine neuroblastoma Neuro2a cell line and rat brain‐derived neural stem cells (mNSCs)

Loading next page...
 
/lp/wiley/enhancement-of-biocompatibility-on-aligned-electrospun-poly-3-fa6kJFo90g
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
1042-7147
eISSN
1099-1581
D.O.I.
10.1002/pat.4313
Publisher site
See Article on Publisher Site

Abstract

Electrospinning has been extensively used to construct tissue‐engineered scaffolds because of its ability to provide the fibrous scaffold with structurally analogous to the naturally occurring protein in the extracellular matrix of native tissues. In addition, the modification of scaffolds with bioactive molecules is beneficial as this can create an environment that consists of biochemical cues to further promote cell adhesion, proliferation, and differentiation. In the present contribution, we prepared and investigated the potential used of aligned electrospun poly(3‐hydroxybutyrate) (PHB) scaffold immobilized with bioactive molecule to serve as nervous scaffold. Laminin was successfully immobilized on the surface using covalent binding between functional groups of modified scaffolds and protein. The ability to use for neural regeneration was evaluated in vitro towards murine neuroblastoma Neuro2a cell line and mouse brain‐derived neural stem cells. The surface modification with laminin immobilized on the PHB fibrous scaffolds supported the attachment and promoted the proliferation of Neuro2a very wells. Despite the good attachment and proliferation of Neuro2a and mouse brain‐derived neural stem cells were not able to proliferate on the neat PHB, hydrolyzed PHB and laminin immobilized on hydrolyzed PHB fibrous scaffold.

Journal

Polymers for Advanced TechnologiesWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off