Enhanced radioluminescent nuclear battery by optimizing structural design of the phosphor layer

Enhanced radioluminescent nuclear battery by optimizing structural design of the phosphor layer Radioluminescent nuclear battery is a type of energy conversion device that can be miniaturized, which has the ability to convert nuclear energy into light energy, and again into electrical energy. To explore the response relationship between the phosphor layer structure and the electrical performance of radioluminescent nuclear battery, the physical model was established to research the deposition energy distribution by using Monte Carlo method. The radioluminescence spectra and current‐voltage characteristic curves were used to investigate the optical and electrical properties. Through a comprehensive comparison of single plane layer, double plane layer, and V groove layer structures, the simulated results are consistent with experimental results. The results indicate that the Monte Carlo simulation is applicable to analysis of the phosphor layer structure of radioluminescent nuclear battery. Additionally, the results also show that the structure type and physical parameters of the phosphor layer have great influence on the energy deposition. A suitable phosphor layer structure can provide a new route to exhibit higher energy conversion efficiency as well as improving the matching degree between the range of radioactive particles and the thickness of the phosphor layer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Energy Research Wiley

Enhanced radioluminescent nuclear battery by optimizing structural design of the phosphor layer

Loading next page...
 
/lp/wiley/enhanced-radioluminescent-nuclear-battery-by-optimizing-structural-dHAnTZJhdd
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0363-907X
eISSN
1099-114X
D.O.I.
10.1002/er.3982
Publisher site
See Article on Publisher Site

Abstract

Radioluminescent nuclear battery is a type of energy conversion device that can be miniaturized, which has the ability to convert nuclear energy into light energy, and again into electrical energy. To explore the response relationship between the phosphor layer structure and the electrical performance of radioluminescent nuclear battery, the physical model was established to research the deposition energy distribution by using Monte Carlo method. The radioluminescence spectra and current‐voltage characteristic curves were used to investigate the optical and electrical properties. Through a comprehensive comparison of single plane layer, double plane layer, and V groove layer structures, the simulated results are consistent with experimental results. The results indicate that the Monte Carlo simulation is applicable to analysis of the phosphor layer structure of radioluminescent nuclear battery. Additionally, the results also show that the structure type and physical parameters of the phosphor layer have great influence on the energy deposition. A suitable phosphor layer structure can provide a new route to exhibit higher energy conversion efficiency as well as improving the matching degree between the range of radioactive particles and the thickness of the phosphor layer.

Journal

International Journal of Energy ResearchWiley

Published: Jan 25, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial