Enhanced adsorption performance of a novel Fe‐Mn‐Zr metal oxide nanocomposite adsorbent for anionic dyes from binary dye mix: Response surface optimization and neural network modeling

Enhanced adsorption performance of a novel Fe‐Mn‐Zr metal oxide nanocomposite adsorbent for... A novel adsorbent, Fe‐Mn‐Zr metal oxide nanocomposite was synthesized and investigated for removal of methyl orange (MO) and eosin yellow (EY) dyes from binary dye solution. The magnetic nanocomposite has shown surface area of 143.01 m2/g and saturation magnetization of 15.29 emu/g. Optimization was carried out via response surface methodology (RSM) for optimizing process variables, and optimum dye removal of 99.26% and 99.55% were obtained for MO and EY dye, respectively with contact time 62 min, adsorbent dose 0.45 g/l, initial MO concentration 11.0 mg/l, and initial EY concentration 25.0 mg/l. A feed forward back propagation neural network model has shown better prediction ability than RSM model for predicting MO and EY dye removal (%). Adsorption process strictly follows Langmuir isotherm model, and enhanced adsorption capacities of 196.07 and 175.43 mg/g were observed for MO and EY dye, respectively due to synergistic effects of physicochemical properties of trimetal oxides. Surface adsorption and pore diffusions are the mechanisms involved in the adsorption as revealed from kinetic studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Enhanced adsorption performance of a novel Fe‐Mn‐Zr metal oxide nanocomposite adsorbent for anionic dyes from binary dye mix: Response surface optimization and neural network modeling

Loading next page...
 
/lp/wiley/enhanced-adsorption-performance-of-a-novel-fe-mn-zr-metal-oxide-08c6WIv1RZ
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4165
Publisher site
See Article on Publisher Site

Abstract

A novel adsorbent, Fe‐Mn‐Zr metal oxide nanocomposite was synthesized and investigated for removal of methyl orange (MO) and eosin yellow (EY) dyes from binary dye solution. The magnetic nanocomposite has shown surface area of 143.01 m2/g and saturation magnetization of 15.29 emu/g. Optimization was carried out via response surface methodology (RSM) for optimizing process variables, and optimum dye removal of 99.26% and 99.55% were obtained for MO and EY dye, respectively with contact time 62 min, adsorbent dose 0.45 g/l, initial MO concentration 11.0 mg/l, and initial EY concentration 25.0 mg/l. A feed forward back propagation neural network model has shown better prediction ability than RSM model for predicting MO and EY dye removal (%). Adsorption process strictly follows Langmuir isotherm model, and enhanced adsorption capacities of 196.07 and 175.43 mg/g were observed for MO and EY dye, respectively due to synergistic effects of physicochemical properties of trimetal oxides. Surface adsorption and pore diffusions are the mechanisms involved in the adsorption as revealed from kinetic studies.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off