Endosymbiosis and its significance in dermatology

Endosymbiosis and its significance in dermatology Proposed at the beginning of the twentieth century to explain the origin of eukaryotic organelles from prokaryotes, endosymbiosis is now medically defined by various interaction patterns between microorganisms and their residing hosts, best exemplified by the bacterial endosymbiont Wolbachia identified in arthropods and filarial nematodes, which can influence normal development, reproduction, survival and transmission of the hosts. Based on the transmission modes, vertical or horizontal, and the function of the endosymbionts, the host–symbiont dependence can be divided into primary or secondary. In dermatology, the role of endosymbionts in skin ectoparasitosis has aroused great interests in the past years. Riesia pediculicola is a primary bacterial endosymbiont in body lice Pediculus humanus, and supplement their hosts with vitamin B, especially pantothenic acid. In cimicosis, the Gram‐negative Wolbachia can synthesize biotin and riboflavin, which are crucial for the growth and reproduction of the bedbug Cimex lectularius. In human demodicosis and rosacea, further study is required to prove the pathogenic role of the Gram‐negative bacteria Bacillus oleronius or the Gram‐positive bacteria Bacillus cereus demonstrated in the Demodex mites. The high infection rate of adult female ticks Ixodes ricinus with the Gram‐negative bacteria Midichloria mitochondrii present in the mitochondria in diverse ovarian cells, with the high seroprevalence rate in tick‐exposed subjects, raises the possibility that this non‐pathogenic endosymbiont may play a role in immune response and successful transmission of the tick‐borne pathogen. The anaerobic protozoan Trichomonas vaginalis and bacteria Mycoplasma hominis are two obligate parasites in the urogenital epithelium, with partially overlapping symptoms. Intracellular localization of Mycoplasma hominis can avoid host immune response and penetration of antibiotics, while Trichomonas vaginalis infected with Mycoplasma hominis seems to have a higher cytopathic activity and amoeboid transformation rate. Further study on the biology and pathogenesis of different endosymbionts in dermatological parasitosis will help for the development of new treatment modalities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the European Academy of Dermatology & Venereology Wiley

Endosymbiosis and its significance in dermatology

Loading next page...
 
/lp/wiley/endosymbiosis-and-its-significance-in-dermatology-p4BtsDQq97
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 European Academy of Dermatology and Venereology
ISSN
0926-9959
eISSN
1468-3083
D.O.I.
10.1111/jdv.14721
Publisher site
See Article on Publisher Site

Abstract

Proposed at the beginning of the twentieth century to explain the origin of eukaryotic organelles from prokaryotes, endosymbiosis is now medically defined by various interaction patterns between microorganisms and their residing hosts, best exemplified by the bacterial endosymbiont Wolbachia identified in arthropods and filarial nematodes, which can influence normal development, reproduction, survival and transmission of the hosts. Based on the transmission modes, vertical or horizontal, and the function of the endosymbionts, the host–symbiont dependence can be divided into primary or secondary. In dermatology, the role of endosymbionts in skin ectoparasitosis has aroused great interests in the past years. Riesia pediculicola is a primary bacterial endosymbiont in body lice Pediculus humanus, and supplement their hosts with vitamin B, especially pantothenic acid. In cimicosis, the Gram‐negative Wolbachia can synthesize biotin and riboflavin, which are crucial for the growth and reproduction of the bedbug Cimex lectularius. In human demodicosis and rosacea, further study is required to prove the pathogenic role of the Gram‐negative bacteria Bacillus oleronius or the Gram‐positive bacteria Bacillus cereus demonstrated in the Demodex mites. The high infection rate of adult female ticks Ixodes ricinus with the Gram‐negative bacteria Midichloria mitochondrii present in the mitochondria in diverse ovarian cells, with the high seroprevalence rate in tick‐exposed subjects, raises the possibility that this non‐pathogenic endosymbiont may play a role in immune response and successful transmission of the tick‐borne pathogen. The anaerobic protozoan Trichomonas vaginalis and bacteria Mycoplasma hominis are two obligate parasites in the urogenital epithelium, with partially overlapping symptoms. Intracellular localization of Mycoplasma hominis can avoid host immune response and penetration of antibiotics, while Trichomonas vaginalis infected with Mycoplasma hominis seems to have a higher cytopathic activity and amoeboid transformation rate. Further study on the biology and pathogenesis of different endosymbionts in dermatological parasitosis will help for the development of new treatment modalities.

Journal

Journal of the European Academy of Dermatology & VenereologyWiley

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial