Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data

Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data The intense plume activity at the South Pole of Enceladus together with the recent detection of libration hints at an internal water ocean underneath the outer ice shell. However, the interpretation of gravity, shape, and libration data leads to contradicting results regarding the depth of ocean/ice interface and the total volume of the ocean. Here we develop an interior structure model consisting of a rocky core, an internal ocean, and an ice shell, which satisfies simultaneously the gravity, shape, and libration data. We show that the data can be reconciled by considering isostatic compensation including the effect of a few hundred meter thick elastic lithosphere. Our model predicts that the core radius is 180–185 km, the ocean density is at least 1030 kg/m3, and the ice shell is 18–22 km thick on average. The ice thicknesses are reduced at poles decreasing to less than 5 km in the south polar region. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geophysical Research Letters Wiley

Loading next page...
 
/lp/wiley/enceladus-s-internal-ocean-and-ice-shell-constrained-from-cassini-zaejYkQjLD
Publisher
Wiley
Copyright
©2016. American Geophysical Union. All Rights Reserved.
ISSN
0094-8276
eISSN
1944-8007
DOI
10.1002/2016GL068634
Publisher site
See Article on Publisher Site

Abstract

The intense plume activity at the South Pole of Enceladus together with the recent detection of libration hints at an internal water ocean underneath the outer ice shell. However, the interpretation of gravity, shape, and libration data leads to contradicting results regarding the depth of ocean/ice interface and the total volume of the ocean. Here we develop an interior structure model consisting of a rocky core, an internal ocean, and an ice shell, which satisfies simultaneously the gravity, shape, and libration data. We show that the data can be reconciled by considering isostatic compensation including the effect of a few hundred meter thick elastic lithosphere. Our model predicts that the core radius is 180–185 km, the ocean density is at least 1030 kg/m3, and the ice shell is 18–22 km thick on average. The ice thicknesses are reduced at poles decreasing to less than 5 km in the south polar region.

Journal

Geophysical Research LettersWiley

Published: Jun 16, 2016

Keywords: ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off