Access the full text.
Sign up today, get DeepDyve free for 14 days.
Due to its uniquely high specific capacity and natural abundance, silicon (Si) anode for lithium‐ion batteries (LIBs) has reaped intensive research from both academic and industrial sectors. This review discusses the ongoing efforts in tailoring Si particle surfaces to minimize the cycle‐induced changes to the integral structure of particles or electrodes. As an upgrade or alternative to conventional coatings (e.g., carbons), the emerging organic moieties on Si offer new avenues toward tuning the interactions with various battery components that are key to electrochemical performances. The recent progress on understanding Si surfaces is reviewed with an emphasis on newly emerged diagnostic tools, which increasingly points to the critical role of organic components in stabilizing Si. The detailed analysis on the chemistry–structure–performance relationships in Si surface are discussed and the successful cases demonstrating the functions of the organic layers are provided, that is, via tailored interactions toward electrolyte or binder or conductive agents, are recapped. Various synthetic strategies for designing the surface organic layers are discussed and compared, highlighting the versatility and tunability of surface organic chemistry. The holistic considerations and promising research directions are summarized, shedding light on in‐depth understanding and engineering Si surface chemistry toward practical LIBs application.
Advanced Energy Materials – Wiley
Published: Aug 1, 2022
Keywords: lithium‐ion batteries; polymer binders; Si anodes; solid electrolyte interfaces; surface chemistry
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.