Emerging Issues in Population Viability Analysis

Emerging Issues in Population Viability Analysis Abstract: Population viability analysis ( PVA) has become a commonly used tool in endangered species management. There is no single process that constitutes PVA, but all approaches have in common an assessment of a population's risk of extinction (or quasi extinction) or its projected population growth either under current conditions or expected from proposed management. As model sophistication increases, and software programs that facilitate PVA without the need for modeling expertise become more available, there is greater potential for the misuse of models and increased confusion over interpreting their results. Consequently, we discuss the practical use and limitations of PVA in conservation planning, and we discuss some emerging issues of PVA. We review extant issues that have become prominent in PVA, including spatially explicit modeling, sensitivity analysis, incorporating genetics into PVA, PVA in plants, and PVA software packages, but our coverage of emerging issues is not comprehensive. We conclude that PVA is a powerful tool in conservation biology for comparing alternative research plans and relative extinction risks among species, but we suggest caution in its use: (1) because PVA is a model, its validity depends on the appropriateness of the model's structure and data quality; (2) results should be presented with appropriate assessment of confidence; (3) model construction and results should be subject to external review, and (4) model structure, input, and results should be treated as hypotheses to be tested. We also suggest (5) restricting the definition of PVA to development of a formal quantitative model, (6) focusing more research on determining how pervasive density‐dependence feedback is across species, and (7) not using PVA to determine minimum population size or (8) the specific probability of reaching extinction. The most appropriate use of PVA may be for comparing the relative effects of potential management actions on population growth or persistence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Conservation Biology Wiley

Loading next page...
 
/lp/wiley/emerging-issues-in-population-viability-analysis-fgKXHhjytG
Publisher
Wiley
Copyright
Copyright © 2002 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0888-8892
eISSN
1523-1739
DOI
10.1046/j.1523-1739.2002.99419.x
Publisher site
See Article on Publisher Site

Abstract

Abstract: Population viability analysis ( PVA) has become a commonly used tool in endangered species management. There is no single process that constitutes PVA, but all approaches have in common an assessment of a population's risk of extinction (or quasi extinction) or its projected population growth either under current conditions or expected from proposed management. As model sophistication increases, and software programs that facilitate PVA without the need for modeling expertise become more available, there is greater potential for the misuse of models and increased confusion over interpreting their results. Consequently, we discuss the practical use and limitations of PVA in conservation planning, and we discuss some emerging issues of PVA. We review extant issues that have become prominent in PVA, including spatially explicit modeling, sensitivity analysis, incorporating genetics into PVA, PVA in plants, and PVA software packages, but our coverage of emerging issues is not comprehensive. We conclude that PVA is a powerful tool in conservation biology for comparing alternative research plans and relative extinction risks among species, but we suggest caution in its use: (1) because PVA is a model, its validity depends on the appropriateness of the model's structure and data quality; (2) results should be presented with appropriate assessment of confidence; (3) model construction and results should be subject to external review, and (4) model structure, input, and results should be treated as hypotheses to be tested. We also suggest (5) restricting the definition of PVA to development of a formal quantitative model, (6) focusing more research on determining how pervasive density‐dependence feedback is across species, and (7) not using PVA to determine minimum population size or (8) the specific probability of reaching extinction. The most appropriate use of PVA may be for comparing the relative effects of potential management actions on population growth or persistence.

Journal

Conservation BiologyWiley

Published: Feb 1, 2002

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off