Access the full text.
Sign up today, get DeepDyve free for 14 days.
Kenneth Hoadley, D. Pettay, A. Grottoli, W. Cai, W. Cai, Todd Melman, V. Schoepf, V. Schoepf, Xinping Hu, Xinping Hu, Qian Li, Qian Li, Hui Xu, Hui Xu, Yongchen Wang, Y. Matsui, Justin Baumann, M. Warner (2015)
Physiological response to elevated temperature and pCO2 varies across four Pacific coral species: Understanding the unique host+symbiont responseScientific Reports, 5
M. Guerzoni, R. Lanciotti, P. Cocconcelli (2001)
Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus.Microbiology, 147 Pt 8
Z. Bachok, Prosper Mfilinge, M. Tsuchiya (2006)
Characterization of fatty acid composition in healthy and bleached corals from Okinawa, JapanCoral Reefs, 25
P. Dörmann (2020)
Membrane lipidsPlant Lipids
S. Hahn, I. Stoilov, T. Ha, D. Raederstorff, G. Doss, Hui Li, C. Djerassi (1988)
Biosynthetic studies of marine lipids. 17. The course of chain elongation and desaturation in long-chain fatty acids of marine spongesJournal of the American Chemical Society, 110
J. Nevenzel (2006)
Occurrence, function and biosynthesis of wax esters in marine organismsLipids, 5
L. Moitinho-Silva, G. Steinert, Shaun Nielsen, C. Hardoim, Yu-chen Wu, G. McCormack, Susanna López‐Legentil, Roman Marchant, N. Webster, T. Thomas, U. Hentschel (2017)
Predicting the HMA-LMA Status in Marine Sponges by Machine LearningFrontiers in Microbiology, 8
N. Shaw (1974)
Lipid composition as a guide to the classification of bacteria.Advances in applied microbiology, 17 0
Peter Nichols, B. Mooney, Nicholas Elliott (2001)
Unusually high levels of non-saponifiable lipids in the fishes escolar and rudderfish identification by gas and thin-layer chromatography.Journal of chromatography. A, 936 1-2
H. Luter, S. Widder, E. Botté, M. Wahab, S. Whalan, L. Moitinho-Silva, T. Thomas, N. Webster (2015)
Biogeographic variation in the microbiome of the ecologically important sponge, Carteriospongia foliascensPeerJ, 3
C. Wilkinson (1983)
Net Primary Productivity in Coral Reef SpongesScience, 219
R. (2002)
THERMAL ADAPTATION IN BIOLOGICAL MEMBRANES : Is Homeoviscous Adaptation the Explanation ?
M. Guerzoni, M. Ferruzzi, M. Sinigaglia, G. Criscuoli (1997)
Increased cellular fatty acid desaturation as a possible key factor in thermotolerance in Saccharomyces cerevisiae.Canadian journal of microbiology, 43 6
H. Lõhelaid, T. Teder, N. Samel (2015)
Lipoxygenase-allene oxide synthase pathway in octocoral thermal stress responseCoral Reefs, 34
J. Folch, M. Lees, G. Stanley (1957)
A simple method for the isolation and purification of total lipides from animal tissues.The Journal of biological chemistry, 226 1
P. Hochachka, G. Somero (1984)
Chapter Eleven. Temperature Adaptation
M. Pineda, A. Duckworth, N. Webster (2015)
Appearance matters: sedimentation effects on different sponge morphologiesJournal of the Marine Biological Association of the United Kingdom, 96
A. Duckworth, B. Peterson (2013)
Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shellsMarine Biology, 160
F. Presti (1985)
Chapter 3 – The Role of Cholesterol in Regulating Membrane Fluidity
W. Nes (1974)
Role of sterols in membranesLipids, 9
Andrew Massaro, J. Weisz, M. Hill, N. Webster (2012)
Behavioral and morphological changes caused by thermal stress in the Great Barrier Reef sponge Rhopaloeides odorabileJournal of Experimental Marine Biology and Ecology
E. Santalova, T. Makarieva, I. Gorshkova, A. Dmitrenok, V. Krasokhin, Valentin Stonik (2004)
Sterols from six marine spongesBiochemical Systematics and Ecology, 32
D. Los, N. Murata (2004)
Membrane fluidity and its roles in the perception of environmental signals.Biochimica et biophysica acta, 1666 1-2
J. Bell, S. Davy, T. Jones, Michael Taylor, N. Webster (2013)
Could some coral reefs become sponge reefs as our climate changes?Global Change Biology, 19
S. Neidleman (1987)
Effects of temperature on lipid unsaturation.Biotechnology & genetic engineering reviews, 5
K. Morrow, D. Bourne, C. Humphrey, E. Botté, P. Laffy, Jesse Zaneveld, S. Uthicke, K. Fabricius, N. Webster (2014)
Natural volcanic CO2 seeps reveal future trajectories for host–microbial associations in corals and spongesThe ISME Journal, 9
W. Koven, Y. Barr, S. Lutzky, I. Ben‐Atia, R. Weiss, M. Harel, P. Behrens, A. Tandler (2001)
The effect of dietary arachidonic acid (20:4n−6) on growth, survival and resistance to handling stress in gilthead seabream (Sparus aurata) larvaeAquaculture, 193
J. Figueiredo, A. Baird, M. Cohen, Jean‐François Flot, T. Kamiki, T. Meziane, M. Tsuchiya, H. Yamasaki (2012)
Ontogenetic change in the lipid and fatty acid composition of scleractinian coral larvaeCoral Reefs, 31
D. Manzello, C. Eakin, P. Glynn (2017)
Effects of Global Warming and Ocean Acidification on Carbonate Budgets of Eastern Pacific Coral Reefs
(2001)
Dietary lipids and stress tolerance of larval fish
H. Pörtner (2002)
Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals.Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 132 4
A. Grottoli, L. Rodrigues, C. Juárez (2004)
Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching eventMarine Biology, 145
I. Horváth, A. Glatz, Hitoshi Nakamoto, M. Mishkind, T. Munnik, Yonousse Saidi, P. Goloubinoff, J. Harwood, L. Vígh (2012)
Heat shock response in photosynthetic organisms: membrane and lipid connections.Progress in lipid research, 51 3
H. Wada, N. Murata (1998)
Membrane Lipids in Cyanobacteria
M. Suutari, Siino Laakso (1994)
Microbial fatty acids and thermal adaptation.Critical reviews in microbiology, 20 4
G. Hölzl, P. Dörmann (2007)
Structure and function of glycoglycerolipids in plants and bacteria.Progress in lipid research, 46 5
Tanja Botić, Darija Cör, A. Anesi, G. Guella, K. Sepčič, D. Janussen, D. Kersken, Ž. Knez (2015)
Fatty acid composition and antioxidant activity of Antarctic marine sponges of the genus LatrunculiaPolar Biology, 38
J. Kornprobst, G. Barnathan (2010)
Demospongic Acids RevisitedMarine Drugs, 8
L. Vígh, Tony Ratliff, G. Balogh, A. Glatz, Stefano Piotto, I. Horváth (2007)
Membrane-regulated stress response: a theoretical and practical approach.Advances in experimental medicine and biology, 594
Lu Fan, Michael Liu, R. Simister, N. Webster, T. Thomas (2013)
Marine microbial symbiosis heats up: the phylogenetic and functional response of a sponge holobiont to thermal stressThe ISME Journal, 7
J. Bergé, G. Barnathan (2005)
Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects.Advances in biochemical engineering/biotechnology, 96
Ben Harvey, S. Agostini, S. Wada, K. Kon, K. Inaba, J. Hall‐Spencer (2017)
Ecosystem effects of ocean acidificationJapan Geoscience Union
J. Conlan, P. Jones, G. Turchini, M. Hall, D. Francis (2014)
Changes in the nutritional composition of captive early-mid stage Panulirus ornatus phyllosoma over ecdysis and larval developmentAquaculture, 434
G. Immanuel, A. Palavesam, M. Petermarian (2001)
Effects of Feeding Lipid Enriched Artemia nauplii on Survival, Growth, Fatty Acids and Stress Resistance of Postlarvae Penaeus indicusAsian fisheries science, 14
C. Djerassi, W. Lam (1991)
Phospholipid Studies of Marine Organisms. Part 25. Sponge PhospholipidsChemInform, 22
Amber Stubler, B. Furman, B. Peterson (2015)
Sponge erosion under acidification and warming scenarios: differential impacts on living and dead coralGlobal Change Biology, 21
D. Müller-Navarra, M. Brett, Anne Liston, C. Goldman (2000)
A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumersNature, 403
Feixue Fu, M. Warner, Yaohong Zhang, Yuanyuan Feng, D. Hutchins (2007)
EFFECTS OF INCREASED TEMPERATURE AND CO2 ON PHOTOSYNTHESIS, GROWTH, AND ELEMENTAL RATIOS IN MARINE SYNECHOCOCCUS AND PROCHLOROCOCCUS (CYANOBACTERIA) 1Journal of Phycology, 43
T. Hughes, J. Kerry, Mariana Álvarez-Noriega, J. Álvarez-Romero, K. Anderson, A. Baird, R. Babcock, M. Beger, D. Bellwood, R. Berkelmans, T. Bridge, I. Butler, M. Byrne, N. Cantin, S. Comeau, S. Connolly, G. Cumming, S. Dalton, G. Diaz-Pulido, C. Eakin, W. Figueira, J. Gilmour, H. Harrison, S. Heron, A. Hoey, J. Hobbs, M. Hoogenboom, E. Kennedy, C. Kuo, J. Lough, Ryan Lowe, Gang Liu, M. McCulloch, H. Malcolm, M. McWilliam, J. Pandolfi, R. Pears, M. Pratchett, V. Schoepf, T. Simpson, W. Skirving, B. Sommer, G. Torda, D. Wachenfeld, B. Willis, S. Wilson (2017)
Global warming and recurrent mass bleaching of coralsNature, 543
D. Martin‐Creuzburg, E. Elert (2009)
Ecological significance of sterols in aquatic food webs
N. Webster, R. Hill (2001)
The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an α-ProteobacteriumMarine Biology, 138
J. Fang, Matheus Mello-Athayde, C. Schönberg, D. Kline, O. Hoegh‐Guldberg, S. Dove (2013)
Sponge biomass and bioerosion rates increase under ocean warming and acidificationGlobal Change Biology, 19
J. Marsden (1975)
Classes of lipids in marine sponges from KenyaJournal of Experimental Marine Biology and Ecology, 19
G. Parent, F. Pernet, R. Tremblay, J. Sévigny, M. Ouellette (2008)
Remodeling of membrane lipids in gills of adult hard clam Mercenaria mercenaria during declining temperatureAquatic Biology, 3
N. Webster, K. Wilson, L. Blackall, R. Hill (2001)
Phylogenetic Diversity of Bacteria Associated with the Marine Sponge Rhopaloeides odorabileApplied and Environmental Microbiology, 67
N. Paulucci, D. Medeot, M. Dardanelli, M. Lema (2011)
Growth Temperature and Salinity Impact Fatty Acid Composition and Degree of Unsaturation in Peanut-Nodulating RhizobiaLipids, 46
M. Lawson, I. Stoilov, J. Thompson, C. Djerassi (1988)
Cell membrane localization of sterols with conventional and unusual side chains in two marine demonspongesLipids, 23
H. Wada, N. Murata (2010)
Lipids in photosynthesis
T. Thomas, D. Rusch, Matthew DeMaere, Pui Yung, Matt Lewis, A. Halpern, K. Heidelberg, S. Egan, P. Steinberg, S. Kjelleberg (2010)
Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosisThe ISME Journal, 4
R. Geider (1987)
LIGHT AND TEMPERATURE DEPENDENCE OF THE CARBON TO CHLOROPHYLL a RATIO IN MICROALGAE AND CYANOBACTERIA: IMPLICATIONS FOR PHYSIOLOGY AND GROWTH OF PHYTOPLANKTONNew Phytologist, 106
K. Kroeker, F. Micheli, M. Gambi (2013)
Ocean acidification causes ecosystem shifts via altered competitive interactionsNature Climate Change, 3
Emilie Genin, G. Wielgosz-Collin, J. Njinkoué, Nambinina Velosaotsy, J. Kornprobst, J. Gouygou, J. Vacelet, G. Barnathan (2008)
New trends in phospholipid class composition of marine sponges.Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology, 150 4
W. Koven, R. Anholt, S. Lutzky, I. Atia, Oriya Nixon, B. Ron, A. Tandler (2003)
The effect of dietary arachidonic acid on growth, survival, and cortisol levels in different-age gilthead seabream larvae (Sparus auratus) exposed to handling or daily salinity change.Aquaculture, 228
J. Volkman (2002)
Sterols in microorganismsApplied Microbiology and Biotechnology, 60
G. Kattner, W. Hagen (2009)
Lipids in marine copepods: latitudinal characteristics and perspective to global warming
A. Arillo, G. Bavestrello, B. Burlando, M. Sará (1993)
Metabolic integration between symbiotic cyanobacteria and sponges: a possible mechanismMarine Biology, 117
M. Sinensky (1974)
Homeoviscous adaptation--a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli.Proceedings of the National Academy of Sciences of the United States of America, 71 2
Katie Hillyer, S. Tumanov, S. Villas-Bôas, S. Davy (2016)
Metabolite profiling of symbiont and host during thermal stress and bleaching in a model cnidarian–dinoflagellate symbiosisJournal of Experimental Biology, 219
L. Copeman, C. Parrish (2004)
Lipids Classes, Fatty Acids, and Sterols in Seafood from Gilbert Bay, Southern LabradorJournal of Agricultural and Food Chemistry, 52
S. Rod’kina (2006)
Fatty Acids and Other Lipids of Marine SpongesRussian Journal of Marine Biology, 31
J. Vicente, N. Silbiger, Bill Beckley, C. Raczkowski, R. Hill (2016)
Impact of high pCO2 and warmer temperatures on the process of silica biomineralization in the sponge Mycale grandisIces Journal of Marine Science, 73
F. Pernet, R. Tremblay (2004)
Effect of varying levels of dietary essential fatty acid during early ontogeny of the sea scallop Placopecten magellanicusJournal of Experimental Marine Biology and Ecology, 310
H. Putnam, K. Barott, T. Ainsworth, R. Gates (2017)
The Vulnerability and Resilience of Reef-Building CoralsCurrent Biology, 27
A. Duckworth, L. West, Tifanie Vansach, Amber Stubler, Marah Hardt (2012)
Effects of water temperature and pH on growth and metabolite biosynthesis of coral reef spongesMarine Ecology Progress Series, 462
A. Grottoli, L. Rodrigues, James Palardy (2006)
Heterotrophic plasticity and resilience in bleached coralsNature, 440
Ján Šajbidor (1997)
Effect of some environmental factors on the content and composition of microbial membrane lipids.Critical reviews in biotechnology, 17 2
Wu Ji (2002)
Analysis of Conjugated Linoleic Acid(CLA)China Oils and Fats
A. Guillot, D. Obis, M. Mistou (2000)
Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress.International journal of food microbiology, 55 1-3
K. Anthony, M. Hoogenboom, J. Maynard, A. Grottoli, R. Middlebrook (2009)
Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleachingFunctional Ecology, 23
C. Parrish (1988)
Dissolved and particulate marine lipid classes: a reviewMarine Chemistry, 23
C. Parrish (2013)
Lipids in Marine EcosystemsInternational Scholarly Research Notices, 2013
R. Ackman (2002)
The gas chromatograph in practical analyses of common and uncommon fatty acids for the 21st centuryAnalytica Chimica Acta, 465
A. Imbs, I. Yakovleva (2012)
Dynamics of lipid and fatty acid composition of shallow-water corals under thermal stress: an experimental approachCoral Reefs, 31
D. Müller-Navarra (1995)
Evidence that a highly unsaturated fatty acid limits Daphnia growth in natureArchiv Fur Hydrobiologie, 132
M. Koopmans, Pieter Rijswijk, H. Boschker, H. Marco, D. Martens, R. Wijffels (2014)
Seasonal Variation of Fatty Acids and Stable Carbon Isotopes in Sponges as Indicators for Nutrition: Biomarkers in Sponges IdentifiedMarine Biotechnology, 17
D. Tchernov, M. Gorbunov, C. Vargas, Swati Yadav, A. Milligan, M. Häggblom, P. Falkowski (2004)
Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals.Proceedings of the National Academy of Sciences of the United States of America, 101 37
Saurabh Singh, R. Sinha, D. Haeder (2002)
Role of Lipids and Fatty Acids in Stress Tolerance in CyanobacteriaActa Protozoologica, 41
S. Hixson, M. Arts (2016)
Climate warming is predicted to reduce omega‐3, long‐chain, polyunsaturated fatty acid production in phytoplanktonGlobal Change Biology, 22
N. Webster, Rose Cobb, A. Negri (2008)
Temperature thresholds for bacterial symbiosis with a spongeThe ISME Journal, 2
Hajime Wada, Z. Gombos, Norio Murata (1994)
Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress.Proceedings of the National Academy of Sciences of the United States of America, 91 10
E. Cruces, P. Huovinen, I. Gómez (2013)
Interactive effects of UV radiation and enhanced temperature on photosynthesis, phlorotannin induction and antioxidant activities of two sub-Antarctic brown algaeMarine Biology, 160
M. Wisshak, C. Schönberg, A. Form, A. Freiwald (2013)
Effects of ocean acidification and global warming on reef bioerosion-lessons from a clionaid spongeAquatic Biology, 19
M. Arts, C. Kohler (2009)
Health and condition in fish: the influence of lipids on membrane competency and immune response
S. Heron, S. Heron, J. Maynard, J. Maynard, R. Hooidonk, R. Hooidonk, C. Eakin (2016)
Warming Trends and Bleaching Stress of the World’s Coral Reefs 1985–2012Scientific Reports, 6
H. Pörtner (2008)
Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s viewMarine Ecology Progress Series, 373
R. Anholt, W. Koven, J. Castell (2004)
Dietary fatty acids and the stress response of fish : arachidonic acid in seabream and tilapia
M. Lesser, C. Fiore, M. Slattery, Jesse Zaneveld (2016)
Climate change stressors destabilize the microbiome of the Caribbean barrel sponge, Xestospongia mutaJournal of Experimental Marine Biology and Ecology, 475
H. Bennett, Christine Altenrath, L. Woods, S. Davy, N. Webster, J. Bell (2017)
Interactive effects of temperature and pCO2 on sponges: from the cradle to the graveGlobal Change Biology, 23
Core team, R. Pachauri, L. Meyer (2014)
Climate change 2014 : synthesis report : A report of the Intergovernmental Panel on Climate Change
A. Norström, M. Nyström, Jerker Lokrantz, C. Folke (2009)
Alternative states on coral reefs: beyond coral–macroalgal phase shiftsMarine Ecology Progress Series, 376
D. Tocher (2003)
Metabolism and Functions of Lipids and Fatty Acids in Teleost FishReviews in Fisheries Science, 11
Ocean warming (OW) and ocean acidification (OA) are threatening coral reef ecosystems, with a bleak future forecast for reef‐building corals, which are already experiencing global declines in abundance. In contrast, many coral reef sponge species are able to tolerate climate change conditions projected for 2100. To increase our understanding of the mechanisms underpinning this tolerance, we explored the lipid and fatty acid (FA) composition of four sponge species with differing sensitivities to climate change, experimentally exposed to OW and OA levels predicted for 2100, under two CO2 Representative Concentration Pathways. Sponges with greater concentrations of storage lipid, phospholipids, sterols and elevated concentrations of n‐3 and n‐6 long‐chain polyunsaturated FA (LC PUFA), were more resistant to OW. Such biochemical constituents likely contribute to the ability of these sponges to maintain membrane function and cell homeostasis in the face of environmental change. Our results suggest that n‐3 and n‐6 LC PUFA are important components of the sponge stress response potentially via chain elongation and the eicosanoid stress‐signalling pathways. The capacity for sponges to compositionally alter their membrane lipids in response to stress was also explored using a number of specific homeoviscous adaptation (HVA) indicators. This revealed a potential mechanism via which additional CO2 could facilitate the resistance of phototrophic sponges to thermal stress through an increased synthesis of membrane‐stabilizing sterols. Finally, OW induced an increase in FA unsaturation in phototrophic sponges but a decrease in heterotrophic species, providing support for a difference in the thermal response pathway between the sponge host and the associated photosymbionts. Here we have shown that sponge lipids and FA are likely to be an important component of the sponge stress response and may play a role in facilitating sponge survival under future climate conditions.
Global Change Biology – Wiley
Published: Jan 1, 2018
Keywords: ; ; ; ; ; ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.