Electrospun Antimicrobial PVDF‐DTAB Nanofibrous Membrane for Air Filtration: Effect of DTAB on Structure, Morphology, Adhesion, and Antibacterial Properties

Electrospun Antimicrobial PVDF‐DTAB Nanofibrous Membrane for Air Filtration: Effect of DTAB on... Antimicrobial polyvinylidene fluoride (PVDF) membrane modified by dodecyltrimethyl ammonium bromide (DTAB) has been electrospun using simple one‐step technology, where the modifying agent DTAB is dissolved in spinning solution. X‐ray photoelectron spectroscopy and electrokinetic analysis confirm reliably the presence of DTAB on the nanofibers surfaces; electrokinetic analysis shows the changes of zeta potential due to modification by DTAB. X‐ray diffraction shows that electrospinning converts the part of α phase (≈40%) present in PVDF powder into β phase with all trans (TTT) zigzag chains conformation in PVDF electrospun membrane. Surface modification does not affect the phase composition of PVDF nanofibers, just only leads to lower crystallinity (smaller size of crystallites) in PVDF nanofibers. DTAB causes the curling of fibers and their aggregation, what completely changed the membrane structure. DTAB‐modified membrane exhibits antibacterial properties against Staphylococcus aureus subsp. Aureus. Concentration of 0.5 wt% DTAB in spinning solution causes partial inhibition of bacterial growth only, while 1.0 wt% concentration leads to complete inhibition. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Macromolecular Materials & Engineering Wiley

Electrospun Antimicrobial PVDF‐DTAB Nanofibrous Membrane for Air Filtration: Effect of DTAB on Structure, Morphology, Adhesion, and Antibacterial Properties

Loading next page...
 
/lp/wiley/electrospun-antimicrobial-pvdf-dtab-nanofibrous-membrane-for-air-8hw2WjENI5
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1438-7492
eISSN
1439-2054
D.O.I.
10.1002/mame.201700415
Publisher site
See Article on Publisher Site

Abstract

Antimicrobial polyvinylidene fluoride (PVDF) membrane modified by dodecyltrimethyl ammonium bromide (DTAB) has been electrospun using simple one‐step technology, where the modifying agent DTAB is dissolved in spinning solution. X‐ray photoelectron spectroscopy and electrokinetic analysis confirm reliably the presence of DTAB on the nanofibers surfaces; electrokinetic analysis shows the changes of zeta potential due to modification by DTAB. X‐ray diffraction shows that electrospinning converts the part of α phase (≈40%) present in PVDF powder into β phase with all trans (TTT) zigzag chains conformation in PVDF electrospun membrane. Surface modification does not affect the phase composition of PVDF nanofibers, just only leads to lower crystallinity (smaller size of crystallites) in PVDF nanofibers. DTAB causes the curling of fibers and their aggregation, what completely changed the membrane structure. DTAB‐modified membrane exhibits antibacterial properties against Staphylococcus aureus subsp. Aureus. Concentration of 0.5 wt% DTAB in spinning solution causes partial inhibition of bacterial growth only, while 1.0 wt% concentration leads to complete inhibition.

Journal

Macromolecular Materials & EngineeringWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial