Electrochemical Aptasensor Based on Poly(Neutral Red) and Carboxylated Pillar[5]arene for Sensitive Determination of Aflatoxin M1

Electrochemical Aptasensor Based on Poly(Neutral Red) and Carboxylated Pillar[5]arene for... Aptasensor for highly sensitive determination of aflatoxin M1 (AFM1) was developed on the base of glassy carbon electrode (GCE) covered with polymeric Neutral red (NR) dye obtained by electropolymerization in the presence of polycarboxylated pillar[5]arene derivative. Aptamer against AFM1 and NR label were then covalently linked to the carboxylic groups of the carrier by carbodiimide binding. At presence of AFM1 the cathodic peak current related to the NR conversion decreases. AFM1 induced also an increase of the charge transfer resistance measured by electrochemical impedance spectroscopy. In optimal conditions, this make it possible to determine from 5 to 120 ng/L AFM1 in standard solutions with limit of detection (LOD) of 0.5 ng/L. The aptasensor was validated on the spiked samples of cow and sheep milk as well as in kefir after their methanol dilution. Reliable detection of the 40–160 ng/kg of mycotoxins was reached. This is below limited threshold value (50 μg/kg) established in EC. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Electroanalysis Wiley

Electrochemical Aptasensor Based on Poly(Neutral Red) and Carboxylated Pillar[5]arene for Sensitive Determination of Aflatoxin M1

Loading next page...
 
/lp/wiley/electrochemical-aptasensor-based-on-poly-neutral-red-and-carboxylated-sHc8ey63Cp
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1040-0397
eISSN
1521-4109
D.O.I.
10.1002/elan.201700735
Publisher site
See Article on Publisher Site

Abstract

Aptasensor for highly sensitive determination of aflatoxin M1 (AFM1) was developed on the base of glassy carbon electrode (GCE) covered with polymeric Neutral red (NR) dye obtained by electropolymerization in the presence of polycarboxylated pillar[5]arene derivative. Aptamer against AFM1 and NR label were then covalently linked to the carboxylic groups of the carrier by carbodiimide binding. At presence of AFM1 the cathodic peak current related to the NR conversion decreases. AFM1 induced also an increase of the charge transfer resistance measured by electrochemical impedance spectroscopy. In optimal conditions, this make it possible to determine from 5 to 120 ng/L AFM1 in standard solutions with limit of detection (LOD) of 0.5 ng/L. The aptasensor was validated on the spiked samples of cow and sheep milk as well as in kefir after their methanol dilution. Reliable detection of the 40–160 ng/kg of mycotoxins was reached. This is below limited threshold value (50 μg/kg) established in EC.

Journal

ElectroanalysisWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off