Effects of topography on rainforest tree community structure and diversity in American Samoa, and implications for frugivore and nectarivore populations

Effects of topography on rainforest tree community structure and diversity in American Samoa, and... Summary Aim We investigated the spatial variation of rainforest tree community structure and composition to determine if forest structure and diversity varied as a function of topography; and in turn if this could influence patterns of habitat use by native forest birds and pteropodid bats. Location The study was undertaken on the island of Tutuila, American Samoa, located in the South Pacific Ocean. Methods All trees ≥10 cm diameter were censused in sixty 200 m2 plots in ridge, slope and valley forest across the island of Tutuila. ResultsForest structure varied significantly across topographical space. Ridge forest was shortest and had the highest stem densities, and valley forest was tallest with the fewest stems per unit area. Species richness was highest on ridges, and slope and valley forest were more similar in composition with each other than they were with ridge forest. Of the fifty‐two tree species encountered in the plots, nine showed a statistical affiliation to one of the three topographical positions. Main conclusionsWe explain patterns of forest structure and diversity in the context of chronic and catastrophic disturbances. Higher stem densities in ridge forest suggested a higher degree of disturbance on ridges, and this was supported by the fact that the height/diameter ratio of the forest was lowest on ridges, which indicated wind‐cropping. We hypothesize the potential effects of topographical variation and known phenological patterns on wildlife abundances. We predict that flowering episodes of ridge‐affiliated, bird‐visited species (particularly Syzygium inophylloides (A. Gray) C. Muell.; Myrtaceae) will concentrate honeyeater densities on ridges, and that fruiting of the tree Canarium vitiense A. Gray (Burseraceae) could localize populations of the Pacific pigeon (Ducula pacifica). Overall (i.e. net) bat foraging patterns are unlikely to be affected by either flowering or fruiting events. Most of the tree species on Tutuila are generalist in their demographic patterns, and the island is depauperate in wildlife fauna; the evolutionary and conservation implications are discussed. We conclude with the argument that conservation of vertebrate species is essential to maintain the current generalist demographic patterns of Samoan trees. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Biogeography Wiley

Effects of topography on rainforest tree community structure and diversity in American Samoa, and implications for frugivore and nectarivore populations

Loading next page...
 
/lp/wiley/effects-of-topography-on-rainforest-tree-community-structure-and-pMxIhoVMyG
Publisher
Wiley
Copyright
Copyright © 1999 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0305-0270
eISSN
1365-2699
DOI
10.1046/j.1365-2699.1999.00326.x
Publisher site
See Article on Publisher Site

Abstract

Summary Aim We investigated the spatial variation of rainforest tree community structure and composition to determine if forest structure and diversity varied as a function of topography; and in turn if this could influence patterns of habitat use by native forest birds and pteropodid bats. Location The study was undertaken on the island of Tutuila, American Samoa, located in the South Pacific Ocean. Methods All trees ≥10 cm diameter were censused in sixty 200 m2 plots in ridge, slope and valley forest across the island of Tutuila. ResultsForest structure varied significantly across topographical space. Ridge forest was shortest and had the highest stem densities, and valley forest was tallest with the fewest stems per unit area. Species richness was highest on ridges, and slope and valley forest were more similar in composition with each other than they were with ridge forest. Of the fifty‐two tree species encountered in the plots, nine showed a statistical affiliation to one of the three topographical positions. Main conclusionsWe explain patterns of forest structure and diversity in the context of chronic and catastrophic disturbances. Higher stem densities in ridge forest suggested a higher degree of disturbance on ridges, and this was supported by the fact that the height/diameter ratio of the forest was lowest on ridges, which indicated wind‐cropping. We hypothesize the potential effects of topographical variation and known phenological patterns on wildlife abundances. We predict that flowering episodes of ridge‐affiliated, bird‐visited species (particularly Syzygium inophylloides (A. Gray) C. Muell.; Myrtaceae) will concentrate honeyeater densities on ridges, and that fruiting of the tree Canarium vitiense A. Gray (Burseraceae) could localize populations of the Pacific pigeon (Ducula pacifica). Overall (i.e. net) bat foraging patterns are unlikely to be affected by either flowering or fruiting events. Most of the tree species on Tutuila are generalist in their demographic patterns, and the island is depauperate in wildlife fauna; the evolutionary and conservation implications are discussed. We conclude with the argument that conservation of vertebrate species is essential to maintain the current generalist demographic patterns of Samoan trees.

Journal

Journal of BiogeographyWiley

Published: Jul 1, 1999

References

  • Tree community diversity of lowland swamp forest in northeast Costa Rica and changes associated with controlled selective logging
    Webb, Webb; Peralta, Peralta
  • Tree and liana enumeration and diversity on a one‐hectare plot in Papua New Guinea
    Wright, Wright; Jessen, Jessen; Burke, Burke; Garza, Garza

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off