Effects of Biorelevant Media Components on Dissolution Behaviour of 1,2,4‐Thiadiazole Derivative Designed for Alzheimerʼs Disease Prevention

Effects of Biorelevant Media Components on Dissolution Behaviour of 1,2,4‐Thiadiazole... In this study, dissolution behaviour of 1,2,4‐thiadiazole derivative (1‐[5‐(3‐chloro‐phenylamino)‐1,2,4‐thiadiazol‐3‐yl]‐propan‐2‐ol) displaying an anti‐Alzheimer activity was examined in biorelevant media such as Simulated Gastric Fluid (SGF, pH 1.2), Fasted State Simulated Gastric Fluid (FaSSGF, pH 1.6) and Fasted State Simulated Intestinal Fluid (FaSSIF, pH 6.5). It was found that solubility and dissolution rate of 1,2,4‐thiadiazole derivative under consideration are not strongly dependent on pH, whereas these parameters are significantly affected by the buffer composition. Dissolution was found to be more effective in buffers composed of the surfactant micelles. It was demonstrated that considerable increase in solubility and dissolution rate in SGF is achieved through the interaction of 1,2,4‐thiadiazole derivative with the micelles of sodium dodecyl sulfate. On the contrary, CMC of sodium taurochalate was shifted in the presence of 1,2,4‐thiadiazole derivative, therefore, dissolution process is not so efficient in FaSSIF. Interactions occurring between 1,2,4‐thiadiazole derivative and the components of biorelevant media were investigated in detail by means of UV/VIS spectroscopy, 1H‐NMR and phase solubility methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chemistry & Biodiversity Wiley

Effects of Biorelevant Media Components on Dissolution Behaviour of 1,2,4‐Thiadiazole Derivative Designed for Alzheimerʼs Disease Prevention

Loading next page...
 
/lp/wiley/effects-of-biorelevant-media-components-on-dissolution-behaviour-of-1-F1fi2aN9Qy
Publisher
Wiley
Copyright
© 2018 Wiley‐VHCA AG, Zurich, Switzerland
ISSN
1612-1872
eISSN
1612-1880
D.O.I.
10.1002/cbdv.201700459
Publisher site
See Article on Publisher Site

Abstract

In this study, dissolution behaviour of 1,2,4‐thiadiazole derivative (1‐[5‐(3‐chloro‐phenylamino)‐1,2,4‐thiadiazol‐3‐yl]‐propan‐2‐ol) displaying an anti‐Alzheimer activity was examined in biorelevant media such as Simulated Gastric Fluid (SGF, pH 1.2), Fasted State Simulated Gastric Fluid (FaSSGF, pH 1.6) and Fasted State Simulated Intestinal Fluid (FaSSIF, pH 6.5). It was found that solubility and dissolution rate of 1,2,4‐thiadiazole derivative under consideration are not strongly dependent on pH, whereas these parameters are significantly affected by the buffer composition. Dissolution was found to be more effective in buffers composed of the surfactant micelles. It was demonstrated that considerable increase in solubility and dissolution rate in SGF is achieved through the interaction of 1,2,4‐thiadiazole derivative with the micelles of sodium dodecyl sulfate. On the contrary, CMC of sodium taurochalate was shifted in the presence of 1,2,4‐thiadiazole derivative, therefore, dissolution process is not so efficient in FaSSIF. Interactions occurring between 1,2,4‐thiadiazole derivative and the components of biorelevant media were investigated in detail by means of UV/VIS spectroscopy, 1H‐NMR and phase solubility methods.

Journal

Chemistry & BiodiversityWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off