Effects of 2 years of caloric restriction on oxidative status assessed by urinary F2‐isoprostanes: The CALERIE 2 randomized clinical trial

Effects of 2 years of caloric restriction on oxidative status assessed by urinary... Calorie restriction (CR) without malnutrition slows aging in animal models. Oxidative stress reduction was proposed to mediate CR effects. CR effect on urinary F2‐isoprostanes, validated oxidative stress markers, was assessed in CALERIE, a two‐year randomized controlled trial. Healthy volunteers (n = 218) were randomized to prescribed 25% CR (n = 143) or ad libitum control (AL, n = 75) stratifying the randomization schedule by site, sex, and BMI. F2‐isoprostanes were quantified using LC‐MS/MS in morning, fasted urine specimens at baseline, at 12 and 24 months. The primary measure of oxidative status was creatinine‐adjusted 2,3‐dinor‐iPF(2α)‐III concentration, additional measured included iPF(2α)‐III, iPF2a‐VI, and 8,12‐iso‐iPF2a‐VI. Intention‐to‐treat analyses assessed change in 2,3‐dinor‐iPF(2α)‐III using mixed models assessing treatment, time, and treatment‐by‐time interaction effects, adjusted for blocking variables and baseline F2‐isoprostane value. Exploratory analyses examined changes in iPF(2α)‐III, iPF(2α)‐VI, and 8,12‐iso‐iPF(2α)‐VI. A factor analysis used aggregate information on F2‐isoprostane values. In CR group, 2,3‐dinor‐iPF(2α)‐III concentrations were reduced from baseline by 17% and 13% at 12 and 24 months, respectively; these changes were significantly different from AL group (p < .01). CR reduced iPF(2α)‐III concentrations by 20% and 27% at 12 and 24 months, respectively (p < .05). The effects were weaker on the VI‐species. CR caused statistically significant reduction in isoprostane factor at both time points, and mean (se) changes were −0.36 (0.06) and −0.31 (0.06). No significant changes in isoprostane factor were at either time point in AL group (p < .01 between‐group difference). We conclude that two‐year CR intervention in healthy, nonobese men and women reduced whole body oxidative stress as assessed by urinary concentrations of F2‐isoprostanes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aging Cell Wiley

Effects of 2 years of caloric restriction on oxidative status assessed by urinary F2‐isoprostanes: The CALERIE 2 randomized clinical trial

Loading next page...
 
/lp/wiley/effects-of-2-years-of-caloric-restriction-on-oxidative-status-assessed-VYRWJ0cj9U
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 The Anatomical Society and John Wiley & Sons Ltd.
ISSN
1474-9718
eISSN
1474-9726
D.O.I.
10.1111/acel.12719
Publisher site
See Article on Publisher Site

Abstract

Calorie restriction (CR) without malnutrition slows aging in animal models. Oxidative stress reduction was proposed to mediate CR effects. CR effect on urinary F2‐isoprostanes, validated oxidative stress markers, was assessed in CALERIE, a two‐year randomized controlled trial. Healthy volunteers (n = 218) were randomized to prescribed 25% CR (n = 143) or ad libitum control (AL, n = 75) stratifying the randomization schedule by site, sex, and BMI. F2‐isoprostanes were quantified using LC‐MS/MS in morning, fasted urine specimens at baseline, at 12 and 24 months. The primary measure of oxidative status was creatinine‐adjusted 2,3‐dinor‐iPF(2α)‐III concentration, additional measured included iPF(2α)‐III, iPF2a‐VI, and 8,12‐iso‐iPF2a‐VI. Intention‐to‐treat analyses assessed change in 2,3‐dinor‐iPF(2α)‐III using mixed models assessing treatment, time, and treatment‐by‐time interaction effects, adjusted for blocking variables and baseline F2‐isoprostane value. Exploratory analyses examined changes in iPF(2α)‐III, iPF(2α)‐VI, and 8,12‐iso‐iPF(2α)‐VI. A factor analysis used aggregate information on F2‐isoprostane values. In CR group, 2,3‐dinor‐iPF(2α)‐III concentrations were reduced from baseline by 17% and 13% at 12 and 24 months, respectively; these changes were significantly different from AL group (p < .01). CR reduced iPF(2α)‐III concentrations by 20% and 27% at 12 and 24 months, respectively (p < .05). The effects were weaker on the VI‐species. CR caused statistically significant reduction in isoprostane factor at both time points, and mean (se) changes were −0.36 (0.06) and −0.31 (0.06). No significant changes in isoprostane factor were at either time point in AL group (p < .01 between‐group difference). We conclude that two‐year CR intervention in healthy, nonobese men and women reduced whole body oxidative stress as assessed by urinary concentrations of F2‐isoprostanes.

Journal

Aging CellWiley

Published: Jan 1, 2018

Keywords: ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off