Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effective and efficient global optimization for conceptual rainfall‐runoff models

Effective and efficient global optimization for conceptual rainfall‐runoff models The successful application of a conceptual rainfall‐runoff (CRR) model depends on how well it is calibrated. Despite the popularity of CRR models, reports in the literature indicate that it is typically difficult, if not impossible, to obtain unique optimal values for their parameters using automatic calibration methods. Unless the best set of parameters associated with a given calibration data set can be found, it is difficult to determine how sensitive the parameter estimates (and hence the model forecasts) are to factors such as input and output data error, model error, quantity and quality of data, objective function used, and so on. Results are presented that establish clearly the nature of the multiple optima problem for the research CRR model SIXPAR. These results suggest that the CRR model optimization problem is more difficult than had been previously thought and that currently used local search procedures have a very low probability of successfully finding the optimal parameter sets. Next, the performance of three existing global search procedures are evaluated on the model SIXPAR. Finally, a powerful new global optimization procedure is presented, entitled the shuffled complex evolution (SCE‐UA) method, which was able to consistently locate the global optimum of the SIXPAR model, and appears to be capable of efficiently and effectively solving the CRR model optimization problem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Research Wiley

Effective and efficient global optimization for conceptual rainfall‐runoff models

Loading next page...
 
/lp/wiley/effective-and-efficient-global-optimization-for-conceptual-rainfall-HdL3tRFMDS

References (33)

Publisher
Wiley
Copyright
Copyright © 1992 by the American Geophysical Union.
ISSN
0043-1397
eISSN
1944-7973
DOI
10.1029/91WR02985
Publisher site
See Article on Publisher Site

Abstract

The successful application of a conceptual rainfall‐runoff (CRR) model depends on how well it is calibrated. Despite the popularity of CRR models, reports in the literature indicate that it is typically difficult, if not impossible, to obtain unique optimal values for their parameters using automatic calibration methods. Unless the best set of parameters associated with a given calibration data set can be found, it is difficult to determine how sensitive the parameter estimates (and hence the model forecasts) are to factors such as input and output data error, model error, quantity and quality of data, objective function used, and so on. Results are presented that establish clearly the nature of the multiple optima problem for the research CRR model SIXPAR. These results suggest that the CRR model optimization problem is more difficult than had been previously thought and that currently used local search procedures have a very low probability of successfully finding the optimal parameter sets. Next, the performance of three existing global search procedures are evaluated on the model SIXPAR. Finally, a powerful new global optimization procedure is presented, entitled the shuffled complex evolution (SCE‐UA) method, which was able to consistently locate the global optimum of the SIXPAR model, and appears to be capable of efficiently and effectively solving the CRR model optimization problem.

Journal

Water Resources ResearchWiley

Published: Apr 1, 1992

There are no references for this article.