Effect of Span 60 on the Microstructure, Crystallization Kinetics, and Mechanical Properties of Stearic Acid Oleogels: An In‐Depth Analysis

Effect of Span 60 on the Microstructure, Crystallization Kinetics, and Mechanical Properties of... Modulation of crystallization of stearic acid and its derivatives is important for tuning the properties of stearate oleogels. The present study delineates the crystallization of stearic acid in stearate oleogels in the presence of Span 60. Microarchitecture analysis revealed that stearic acid crystals in the oleogels changed its shape from plate‐like structure to a branched architecture in the presence of Span 60. Consequently, a significant variation in the mobility of the solute molecules inside the oleogel (Fluorescence recovery after photobleaching studies, FRAP analysis) was observed. Thermal analysis (gelation kinetics and DSC) revealed shortening of nucleation induction time and secondary crystallization with an increase in the Span 60 concentration. Furthermore, isosolid diagram suggested better physical stability of the formulations at higher proportions of Span 60. XRD analysis indicated that there was a decrease in the crystal size and the crystallinity of the stearic acid crystals with an increase in Span 60 concentration in the Span 60 containing oleogels. However, crystal growth orientation was unidirectional and found unaltered with Span 60 concentration (Avarmi analysis using DSC data). The mechanical study indicated a composition‐dependent variation in the viscoelastic properties (instantaneous (τ1), intermediate (τ2), and delayed (τ3) relaxation times) of the formulations. In conclusion, Span 60 can be used to alter the kinetics of the crystallization, crystal habit and crystal structure of stearic acid. This study provides a number of clues that could be used further for developing oleogel based formulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Food Science Wiley

Effect of Span 60 on the Microstructure, Crystallization Kinetics, and Mechanical Properties of Stearic Acid Oleogels: An In‐Depth Analysis

Loading next page...
 
/lp/wiley/effect-of-span-60-on-the-microstructure-crystallization-kinetics-and-xJr0f2cPoG
Publisher
Wiley
Copyright
© 2016 Institute of Food Technologists®
ISSN
0022-1147
eISSN
1750-3841
D.O.I.
10.1111/1750-3841.13170
Publisher site
See Article on Publisher Site

Abstract

Modulation of crystallization of stearic acid and its derivatives is important for tuning the properties of stearate oleogels. The present study delineates the crystallization of stearic acid in stearate oleogels in the presence of Span 60. Microarchitecture analysis revealed that stearic acid crystals in the oleogels changed its shape from plate‐like structure to a branched architecture in the presence of Span 60. Consequently, a significant variation in the mobility of the solute molecules inside the oleogel (Fluorescence recovery after photobleaching studies, FRAP analysis) was observed. Thermal analysis (gelation kinetics and DSC) revealed shortening of nucleation induction time and secondary crystallization with an increase in the Span 60 concentration. Furthermore, isosolid diagram suggested better physical stability of the formulations at higher proportions of Span 60. XRD analysis indicated that there was a decrease in the crystal size and the crystallinity of the stearic acid crystals with an increase in Span 60 concentration in the Span 60 containing oleogels. However, crystal growth orientation was unidirectional and found unaltered with Span 60 concentration (Avarmi analysis using DSC data). The mechanical study indicated a composition‐dependent variation in the viscoelastic properties (instantaneous (τ1), intermediate (τ2), and delayed (τ3) relaxation times) of the formulations. In conclusion, Span 60 can be used to alter the kinetics of the crystallization, crystal habit and crystal structure of stearic acid. This study provides a number of clues that could be used further for developing oleogel based formulation.

Journal

Journal of Food ScienceWiley

Published: Feb 1, 2016

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off