Effect of nano ribbons formed by the amide segment on the solvent resistivity of segmented block copolymers based on polystyrene

Effect of nano ribbons formed by the amide segment on the solvent resistivity of segmented block... A segmented block copolymer is synthesized using dihydroxy terminated polystyrene (PSt) (MW = 2,500 g/mol) and crystallizable amide segments. PSt length in the copolymer is varied from 2,500 to 10,000 g/mol using dimethylterephthalate (T). Amide segment is synthesized in situ using diamine‐diamide 6X6 (X = A or T) (synthesized by dimethylterepthalate [T], adipic acid [A], and hexamethylenediamine [6]) and T. This work is to modify the high Tg amorphous PSt to a semicrystalline copolymers (‐(PSt‐T)y‐6X6‐T‐)‐n). These copolymers have a very high inherent viscosity and depending on the amide concentration, the melting temperature of the polymers was ranged between 129°C and 248°C. The crystallinity of the amide segments is up to 75%. The AFM analysis showed the presence of crystalline ribbons with a high aspect ratio. All the polymers show single stage decomposition temperature centered around 420°C. The solvent resistivity of these materials is very high even at a low concentration of (5 wt%) amide content. POLYM. ENG. SCI., 58:361–368, 2018. © 2017 Society of Plastics Engineers http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Engineering & Science Wiley

Effect of nano ribbons formed by the amide segment on the solvent resistivity of segmented block copolymers based on polystyrene

Loading next page...
 
/lp/wiley/effect-of-nano-ribbons-formed-by-the-amide-segment-on-the-solvent-khcZyhSb3x
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Society of Plastics Engineers
ISSN
0032-3888
eISSN
1548-2634
D.O.I.
10.1002/pen.24582
Publisher site
See Article on Publisher Site

Abstract

A segmented block copolymer is synthesized using dihydroxy terminated polystyrene (PSt) (MW = 2,500 g/mol) and crystallizable amide segments. PSt length in the copolymer is varied from 2,500 to 10,000 g/mol using dimethylterephthalate (T). Amide segment is synthesized in situ using diamine‐diamide 6X6 (X = A or T) (synthesized by dimethylterepthalate [T], adipic acid [A], and hexamethylenediamine [6]) and T. This work is to modify the high Tg amorphous PSt to a semicrystalline copolymers (‐(PSt‐T)y‐6X6‐T‐)‐n). These copolymers have a very high inherent viscosity and depending on the amide concentration, the melting temperature of the polymers was ranged between 129°C and 248°C. The crystallinity of the amide segments is up to 75%. The AFM analysis showed the presence of crystalline ribbons with a high aspect ratio. All the polymers show single stage decomposition temperature centered around 420°C. The solvent resistivity of these materials is very high even at a low concentration of (5 wt%) amide content. POLYM. ENG. SCI., 58:361–368, 2018. © 2017 Society of Plastics Engineers

Journal

Polymer Engineering & ScienceWiley

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off