Ear ossicle morphology of the Jurassic euharamiyidan Arboroharamiya and evolution of mammalian middle ear

Ear ossicle morphology of the Jurassic euharamiyidan Arboroharamiya and evolution of mammalian... The middle ear bones of Mesozoic mammals are rarely preserved as fossils and the morphology of these ossicles in the earliest mammals remains poorly known. Here, we report the stapes and incus of the euharamiyidan Arboroharamiya from the lower Upper Jurassic (∼160 Ma) of northern China, which represent the earliest known mammalian middle ear ossicles. Both bones are miniscule in relation to those in non‐mammalian cynodonts. The skull length/stapedial footplate diameter ratio is estimated as 51.74 and the stapes length as the percentage of the skull length is 4%; both numbers fall into the stapes size ranges of mammals. The stapes is “rod‐like” and has a large stapedial foramen. It is unique among mammaliaforms in having a distinct posterior process that is interpreted as for insertion of the stapedius muscle and homologized to the ossified proximal (stapedial) end of the interhyal, on which the stapedius muscle attached. The incus differs from the quadrate of non‐mammalian cynodonts such as morganucodontids in having small size and a slim short process. Along with lack of the postdentary trough and Meckelian groove on the medial surface of the dentary, the ossicles suggest development of the definitive mammalian middle ear (DMME) in Arboroharamiya. Among various higher‐level phylogenetic hypotheses of mammals, the one we preferred places “haramiyidans” within Mammalia. Given this phylogeny, development of the DMME took place once in the allotherian clade containing euharamiyidans and multituberculates, probably independent to those of monotremes and therians. Thus, the DMME has evolved at least three times independently in mammals. Alternative hypothesis that placed “haramiyidans” outside of Mammalia would require independent acquisition of the DMME in multituberculates and euharamiyidans as well as parallel evolution of numerous derived similarities in the dentition, occlusion pattern, mandibles, cranium, and postcranium between the two groups and between “haramiyidans” and other mammals. J. Morphol. 279:441–457, 2018. © 2016 Wiley Periodicals, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Morphology Wiley

Ear ossicle morphology of the Jurassic euharamiyidan Arboroharamiya and evolution of mammalian middle ear

Loading next page...
 
/lp/wiley/ear-ossicle-morphology-of-the-jurassic-euharamiyidan-arboroharamiya-npOQYsRIjg
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
0362-2525
eISSN
1097-4687
D.O.I.
10.1002/jmor.20565
Publisher site
See Article on Publisher Site

Abstract

The middle ear bones of Mesozoic mammals are rarely preserved as fossils and the morphology of these ossicles in the earliest mammals remains poorly known. Here, we report the stapes and incus of the euharamiyidan Arboroharamiya from the lower Upper Jurassic (∼160 Ma) of northern China, which represent the earliest known mammalian middle ear ossicles. Both bones are miniscule in relation to those in non‐mammalian cynodonts. The skull length/stapedial footplate diameter ratio is estimated as 51.74 and the stapes length as the percentage of the skull length is 4%; both numbers fall into the stapes size ranges of mammals. The stapes is “rod‐like” and has a large stapedial foramen. It is unique among mammaliaforms in having a distinct posterior process that is interpreted as for insertion of the stapedius muscle and homologized to the ossified proximal (stapedial) end of the interhyal, on which the stapedius muscle attached. The incus differs from the quadrate of non‐mammalian cynodonts such as morganucodontids in having small size and a slim short process. Along with lack of the postdentary trough and Meckelian groove on the medial surface of the dentary, the ossicles suggest development of the definitive mammalian middle ear (DMME) in Arboroharamiya. Among various higher‐level phylogenetic hypotheses of mammals, the one we preferred places “haramiyidans” within Mammalia. Given this phylogeny, development of the DMME took place once in the allotherian clade containing euharamiyidans and multituberculates, probably independent to those of monotremes and therians. Thus, the DMME has evolved at least three times independently in mammals. Alternative hypothesis that placed “haramiyidans” outside of Mammalia would require independent acquisition of the DMME in multituberculates and euharamiyidans as well as parallel evolution of numerous derived similarities in the dentition, occlusion pattern, mandibles, cranium, and postcranium between the two groups and between “haramiyidans” and other mammals. J. Morphol. 279:441–457, 2018. © 2016 Wiley Periodicals, Inc.

Journal

Journal of MorphologyWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial