To understand the coupled water and energy cycles in semiarid environments, we measured temporal fluctuations of evapotranspiration (ET) and identified key sources of the observed variability. Flux measurements are made using the Bowen ratio method, accompanied by measurements of soil moisture and radiation. We present data from semiarid grassland and shrubland sites, situated within 2 km of each other in New Mexico. The study includes three summer monsoon seasons. Midday available energy (Qa) is higher at the grassland than at the shrubland by 20% or 70 W m−2 because of differences in net radiation (Rn) and soil heat flux (G). At both sites, midday evaporative fraction and daily ET are strongly correlated with surface soil moisture (θ0–5cm) but poorly correlated with water content at greater depths or averaged throughout the entire root zone. The sensitivity of EF to θ0–5cm is 30% lower at the grassland site. The differences in Qa and EF cancel, yielding similar time series of ET at the two sites. Decreases in θ0–5cm, ET, and EF following rainfall events are rapid: exponential time constants are less than 3 days. With the exception of the largest storms, infiltration following rainfall events only wets the top 10 cm of soil. Therefore the surface soil layer is the primary reservoir for water storage and source for ET during the monsoon season, suggesting that direct evaporation is a large component of ET. Given these results, predicting ET based on root zone–averaged soil moisture is inappropriate in the semiarid environments studied here.
Water Resources Research – Wiley
Published: Sep 1, 2004
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create folders to | ||
Export folders, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
PDF Discount | 20% off | |
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
EndNote
Export to EndNoteAll DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.
ok to continue