Dual Anion–Cation Reversible Insertion in a Bipyridinium–Diamide Triad as the Negative Electrode for Aqueous Batteries

Dual Anion–Cation Reversible Insertion in a Bipyridinium–Diamide Triad as the Negative... Aqueous batteries are an emerging candidate for low‐cost and environmentally friendly grid storage systems. Designing such batteries from inexpensive, abundant, recyclable, and nontoxic organic active materials provides a logical step toward improving both the environmental and economic impact of these systems. Herein the first ever battery material that works with simultaneous uptake and release of both cations and anions is proposed by coupling p‐type (bipyridinium) and n‐type (naphthalene diimide) redox moieties. It represents one of a new family of electrode materials which demonstrates an optimal oxidation potential (−0.47 V vs saturated calomel electrode), extremely fast kinetics, a highly competitive capacity (63 mA h g−1 at 4C), and cyclability in both neutral Na+ and Mg2+ electrolytes of molar range concentration. Through a combination of UV–vis spectroelectrochemistry, electrochemical quartz‐crystal microbalance, Operando synchrotron‐X‐ray diffraction, and density functional theory calculations a novel dual cation/anion insertion mechanism was proven and rationalized. Based on these findings, this innovative p/n‐type product may well provide a viable option for use as a negative electrode material, thereby promoting the design of cutting‐edge, low‐cost, rocking‐chair dual‐ion aqueous batteries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Dual Anion–Cation Reversible Insertion in a Bipyridinium–Diamide Triad as the Negative Electrode for Aqueous Batteries

Loading next page...
 
/lp/wiley/dual-anion-cation-reversible-insertion-in-a-bipyridinium-diamide-triad-cT7uIZhc0E
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
D.O.I.
10.1002/aenm.201701988
Publisher site
See Article on Publisher Site

Abstract

Aqueous batteries are an emerging candidate for low‐cost and environmentally friendly grid storage systems. Designing such batteries from inexpensive, abundant, recyclable, and nontoxic organic active materials provides a logical step toward improving both the environmental and economic impact of these systems. Herein the first ever battery material that works with simultaneous uptake and release of both cations and anions is proposed by coupling p‐type (bipyridinium) and n‐type (naphthalene diimide) redox moieties. It represents one of a new family of electrode materials which demonstrates an optimal oxidation potential (−0.47 V vs saturated calomel electrode), extremely fast kinetics, a highly competitive capacity (63 mA h g−1 at 4C), and cyclability in both neutral Na+ and Mg2+ electrolytes of molar range concentration. Through a combination of UV–vis spectroelectrochemistry, electrochemical quartz‐crystal microbalance, Operando synchrotron‐X‐ray diffraction, and density functional theory calculations a novel dual cation/anion insertion mechanism was proven and rationalized. Based on these findings, this innovative p/n‐type product may well provide a viable option for use as a negative electrode material, thereby promoting the design of cutting‐edge, low‐cost, rocking‐chair dual‐ion aqueous batteries.

Journal

Advanced Energy MaterialsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial