Dual Anion–Cation Reversible Insertion in a Bipyridinium–Diamide Triad as the Negative Electrode for Aqueous Batteries

Dual Anion–Cation Reversible Insertion in a Bipyridinium–Diamide Triad as the Negative... Aqueous batteries are an emerging candidate for low‐cost and environmentally friendly grid storage systems. Designing such batteries from inexpensive, abundant, recyclable, and nontoxic organic active materials provides a logical step toward improving both the environmental and economic impact of these systems. Herein the first ever battery material that works with simultaneous uptake and release of both cations and anions is proposed by coupling p‐type (bipyridinium) and n‐type (naphthalene diimide) redox moieties. It represents one of a new family of electrode materials which demonstrates an optimal oxidation potential (−0.47 V vs saturated calomel electrode), extremely fast kinetics, a highly competitive capacity (63 mA h g−1 at 4C), and cyclability in both neutral Na+ and Mg2+ electrolytes of molar range concentration. Through a combination of UV–vis spectroelectrochemistry, electrochemical quartz‐crystal microbalance, Operando synchrotron‐X‐ray diffraction, and density functional theory calculations a novel dual cation/anion insertion mechanism was proven and rationalized. Based on these findings, this innovative p/n‐type product may well provide a viable option for use as a negative electrode material, thereby promoting the design of cutting‐edge, low‐cost, rocking‐chair dual‐ion aqueous batteries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Dual Anion–Cation Reversible Insertion in a Bipyridinium–Diamide Triad as the Negative Electrode for Aqueous Batteries

Loading next page...
 
/lp/wiley/dual-anion-cation-reversible-insertion-in-a-bipyridinium-diamide-triad-cT7uIZhc0E
Publisher
Wiley
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
D.O.I.
10.1002/aenm.201701988
Publisher site
See Article on Publisher Site

Abstract

Aqueous batteries are an emerging candidate for low‐cost and environmentally friendly grid storage systems. Designing such batteries from inexpensive, abundant, recyclable, and nontoxic organic active materials provides a logical step toward improving both the environmental and economic impact of these systems. Herein the first ever battery material that works with simultaneous uptake and release of both cations and anions is proposed by coupling p‐type (bipyridinium) and n‐type (naphthalene diimide) redox moieties. It represents one of a new family of electrode materials which demonstrates an optimal oxidation potential (−0.47 V vs saturated calomel electrode), extremely fast kinetics, a highly competitive capacity (63 mA h g−1 at 4C), and cyclability in both neutral Na+ and Mg2+ electrolytes of molar range concentration. Through a combination of UV–vis spectroelectrochemistry, electrochemical quartz‐crystal microbalance, Operando synchrotron‐X‐ray diffraction, and density functional theory calculations a novel dual cation/anion insertion mechanism was proven and rationalized. Based on these findings, this innovative p/n‐type product may well provide a viable option for use as a negative electrode material, thereby promoting the design of cutting‐edge, low‐cost, rocking‐chair dual‐ion aqueous batteries.

Journal

Advanced Energy MaterialsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off