Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia

Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia 1 Droughts and fires are increasingly recognized as a significant component of tropical rain forest dynamics but detailed large‐scale assessments of such events are scarce. Here we examine tree mortality in a lowland rainforest in East Kalimantan after an extreme drought (the most severe ever reported in a tropical forest study), and a subsequent fire. Eighteen 1.8‐ha paired permanent plots that crossed a firebreak allowed us to examine the separate effects of the two events. 2 Eight months after the drought, stem mortality in unburned forests reached 18.5 ± 5.6% (average ± SD ≥ 10 cm diameter breast height, d.b.h.). After 21 months, this increased to 26.3 ± 5.0%. Mortality was higher in larger stems, being 46.6 ± 18.7% in stems > 80 cm d.b.h., but falling to 23.9 ± 3.7% in stems 10–20 cm d.b.h. (after 21 months). The burned forest showed an overall mortality of 64.2 ± 12.2%. This increased to 79.0 ± 10.2% after 21 months. 3 By subtracting mortality after drought alone from mortality with fire in each plot pair, we can estimate the distinct influence of drought and subsequent fire. Fire caused near complete mortality for individuals < 10 cm d.b.h., but did not increase tree mortality for individuals > 70 cm d.b.h. 4 Drought contributes approximately 30% of the stem death observed in the burned forest after 21 months but the estimated contributions to dead basal area and biomass are higher at 52% and 63%, respectively. The forest contained around 7.3 tonnes ha−1 (± 2.2, 95% confidence) of above‐ground biomass as dead trees (≥ 10 cm d.b.h) prior to the drought, rising to 133 ± 30 tonnes ha−1 21 months after drought alone, and 207 ± 50 tonnes ha−1 in burned forest. 5 Eusideroxylon zwageri survived the drought with only 5% mortality after 21 months. Overall per‐species mortality appears negatively correlated to wood density, though Koompassia malaccensis, with 64% mortality, is an outlier. 6 Though species‐specific mortality varied from 11 to 91% in burned forest, overall stem survival after fire was significantly correlated with greater bark thickness at larger sizes. Consequently, species well represented at large sizes, mainly Dipterocarpaceae, increase in relative dominance compared with smaller taxa. Palm mortality was low, reaching only 3% after drought and 10% in burned forest. 7 The stem mortalities recorded in this study are amongst the most severe ever observed in rainforest. Such droughts, though rare, are potent determinants of forest structure and composition. Drought and fire are an especially destructive combination as they act on larger and smaller stems, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Ecology Wiley

Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia

Loading next page...
 
/lp/wiley/drought-fire-and-tree-survival-in-a-borneo-rain-forest-east-kalimantan-VaJrPgdqy9
Publisher
Wiley
Copyright
Copyright © 2005 Wiley Subscription Services
ISSN
0022-0477
eISSN
1365-2745
DOI
10.1111/j.1365-2745.2004.00954.x
Publisher site
See Article on Publisher Site

Abstract

1 Droughts and fires are increasingly recognized as a significant component of tropical rain forest dynamics but detailed large‐scale assessments of such events are scarce. Here we examine tree mortality in a lowland rainforest in East Kalimantan after an extreme drought (the most severe ever reported in a tropical forest study), and a subsequent fire. Eighteen 1.8‐ha paired permanent plots that crossed a firebreak allowed us to examine the separate effects of the two events. 2 Eight months after the drought, stem mortality in unburned forests reached 18.5 ± 5.6% (average ± SD ≥ 10 cm diameter breast height, d.b.h.). After 21 months, this increased to 26.3 ± 5.0%. Mortality was higher in larger stems, being 46.6 ± 18.7% in stems > 80 cm d.b.h., but falling to 23.9 ± 3.7% in stems 10–20 cm d.b.h. (after 21 months). The burned forest showed an overall mortality of 64.2 ± 12.2%. This increased to 79.0 ± 10.2% after 21 months. 3 By subtracting mortality after drought alone from mortality with fire in each plot pair, we can estimate the distinct influence of drought and subsequent fire. Fire caused near complete mortality for individuals < 10 cm d.b.h., but did not increase tree mortality for individuals > 70 cm d.b.h. 4 Drought contributes approximately 30% of the stem death observed in the burned forest after 21 months but the estimated contributions to dead basal area and biomass are higher at 52% and 63%, respectively. The forest contained around 7.3 tonnes ha−1 (± 2.2, 95% confidence) of above‐ground biomass as dead trees (≥ 10 cm d.b.h) prior to the drought, rising to 133 ± 30 tonnes ha−1 21 months after drought alone, and 207 ± 50 tonnes ha−1 in burned forest. 5 Eusideroxylon zwageri survived the drought with only 5% mortality after 21 months. Overall per‐species mortality appears negatively correlated to wood density, though Koompassia malaccensis, with 64% mortality, is an outlier. 6 Though species‐specific mortality varied from 11 to 91% in burned forest, overall stem survival after fire was significantly correlated with greater bark thickness at larger sizes. Consequently, species well represented at large sizes, mainly Dipterocarpaceae, increase in relative dominance compared with smaller taxa. Palm mortality was low, reaching only 3% after drought and 10% in burned forest. 7 The stem mortalities recorded in this study are amongst the most severe ever observed in rainforest. Such droughts, though rare, are potent determinants of forest structure and composition. Drought and fire are an especially destructive combination as they act on larger and smaller stems, respectively.

Journal

Journal of EcologyWiley

Published: Jan 1, 2005

Keywords: ; ; ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off