Access the full text.
Sign up today, get DeepDyve free for 14 days.
Over the past five years, there has been a significant increase in both the intensity of research and the performance of crystalline silicon devices which utilize metal compounds to form carrier‐selective heterocontacts. Such heterocontacts are less fundamentally limited and have the potential for lower costs compared to the current industry dominating heavily doped, directly metalized contacts. A low temperature (≤230 °C), TiOx/LiFx/Al electron heterocontact is presented here, which achieves mΩcm2 scale contact resistivities ρc on lowly doped n‐type substrates. As an extreme demonstration of the potential of this heterocontact, it is trialed in a newly developed, high efficiency n‐type solar cell architecture as a partial rear contact (PRC). Despite only contacting ≈1% of the rear surface area, an efficiency of greater than 23% is achieved, setting a new benchmark for n‐type solar cells featuring undoped PRCs and confirming the unusually low ρc of the TiOx/LiFx/Al contact. Finally, in contrast to previous versions of the n‐type undoped PRC cell, the performance of this cell is maintained after annealing at 350–400 °C, suggesting its compatibility with conventional surface passivation activation and sintering steps.
Advanced Energy Materials – Wiley
Published: Mar 1, 2019
Keywords: ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.