Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology

Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular... ABSTRACT Experiments are described in which tobacco (Nicotiana tabacum L.) transformed with antisense rbcS to decrease expression of ribulose‐1,5‐bisphosphate carboxylase‐oxygenase (Rubisco) was used to evaluate the contribution of Rubisco to the control of photosynthetic rate, and the impact of a changed rate of photosynthesis on whole plant composition, allocation and growth. (1) The concept of flux control coefficients is introduced. It is discussed how, with adequate precautions, a set of wild‐type and transgenic plants with varying expression of an enzyme can be used to obtain experimental values for its flux control coefficient. (2) The flux control coefficient of Rubisco for photosynthesis depends on the short‐term conditions. It increases in high light, or low CO2. (3) When plants are grown under constant irradiance, the flux control coefficient in the growth conditions is low (<0.2) at irradiances of up to 1000μmol quanta m−2 s−1. In a natural irradiance regime exceeding 1500μmol quanta m−2 s−2 over several hours the flux coefficient rose to 0.8–0.9. It is concluded that plants are able to adjust the balance between Rubisco and the remainder of the photosynthetic machinery, and thereby avoid a one‐sided limitation of photosynthesis by Rubisco over a wide range of ambient growth irradiance regimes. (4) When the plants were grown on limiting inorganic nitrogen, Rubisco had a higher flux control coefficient (0.5). It is proposed that, in many growth conditions, part of the investment in Rubisco may be viewed as a nitrogen store, albeit bringing additional marginal advantages with respect to photosynthetic rate and water use efficiency. (5) A change in the rate of photosynthesis did not automatically translate into a change in growth rate. Several factors are identified which contribute to this buffering of growth against a changed photosynthetic rate. (6) There is an alteration in whole plant allocation, resulting in an increase in the leaf area ratio. The increase is mainly due to a higher leaf water content, and not to changes in shoot/root allocation. This increased investment in whole plant leaf area partly counteracts the decreased efficiency of photosynthesis at the biochemical level. (7) Plants with decreased Rubisco have a lower intrinsic water use efficiency and contain high levels of inorganic cations and anions. It is proposed that these are a consequence of the increased rate of transpiration, and that the resulting osmotic potential might be a contributory factor to the increased water content and expansion of the leaves. (8) Starch accumulation in source leaves is decreased when unit leaf photosynthesis is reduced, allowing a more efficient use of the fixed carbon. (9) Decreased availability of carbohydrates leads to a down‐regulation of nitrate assimilation, acting via a decrease in nitrate reductase activity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Cell & Environment Wiley

Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology

Plant Cell & Environment, Volume 17 (5) – May 1, 1994

Loading next page...
 
/lp/wiley/does-rubisco-control-the-rate-of-photosynthesis-and-plant-growth-an-hz20c7rf3P
Publisher
Wiley
Copyright
Copyright © 1994 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0140-7791
eISSN
1365-3040
D.O.I.
10.1111/j.1365-3040.1994.tb00144.x
Publisher site
See Article on Publisher Site

Abstract

ABSTRACT Experiments are described in which tobacco (Nicotiana tabacum L.) transformed with antisense rbcS to decrease expression of ribulose‐1,5‐bisphosphate carboxylase‐oxygenase (Rubisco) was used to evaluate the contribution of Rubisco to the control of photosynthetic rate, and the impact of a changed rate of photosynthesis on whole plant composition, allocation and growth. (1) The concept of flux control coefficients is introduced. It is discussed how, with adequate precautions, a set of wild‐type and transgenic plants with varying expression of an enzyme can be used to obtain experimental values for its flux control coefficient. (2) The flux control coefficient of Rubisco for photosynthesis depends on the short‐term conditions. It increases in high light, or low CO2. (3) When plants are grown under constant irradiance, the flux control coefficient in the growth conditions is low (<0.2) at irradiances of up to 1000μmol quanta m−2 s−1. In a natural irradiance regime exceeding 1500μmol quanta m−2 s−2 over several hours the flux coefficient rose to 0.8–0.9. It is concluded that plants are able to adjust the balance between Rubisco and the remainder of the photosynthetic machinery, and thereby avoid a one‐sided limitation of photosynthesis by Rubisco over a wide range of ambient growth irradiance regimes. (4) When the plants were grown on limiting inorganic nitrogen, Rubisco had a higher flux control coefficient (0.5). It is proposed that, in many growth conditions, part of the investment in Rubisco may be viewed as a nitrogen store, albeit bringing additional marginal advantages with respect to photosynthetic rate and water use efficiency. (5) A change in the rate of photosynthesis did not automatically translate into a change in growth rate. Several factors are identified which contribute to this buffering of growth against a changed photosynthetic rate. (6) There is an alteration in whole plant allocation, resulting in an increase in the leaf area ratio. The increase is mainly due to a higher leaf water content, and not to changes in shoot/root allocation. This increased investment in whole plant leaf area partly counteracts the decreased efficiency of photosynthesis at the biochemical level. (7) Plants with decreased Rubisco have a lower intrinsic water use efficiency and contain high levels of inorganic cations and anions. It is proposed that these are a consequence of the increased rate of transpiration, and that the resulting osmotic potential might be a contributory factor to the increased water content and expansion of the leaves. (8) Starch accumulation in source leaves is decreased when unit leaf photosynthesis is reduced, allowing a more efficient use of the fixed carbon. (9) Decreased availability of carbohydrates leads to a down‐regulation of nitrate assimilation, acting via a decrease in nitrate reductase activity.

Journal

Plant Cell & EnvironmentWiley

Published: May 1, 1994

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off