Docosahexaenoic acid induces apoptosis in proliferating human endothelial cells

Docosahexaenoic acid induces apoptosis in proliferating human endothelial cells n‐3 polyunsaturated fatty acids (PUFAs) have been shown to exert beneficial effects in the prevention of cardiovascular disease, inflammation, and on tumor growth. To investigate effects of PUFAs on proliferation and apoptosis in endothelial cells, we tested the n‐3 PUFA docosahexaenoic acid (DHA) and the n‐6 PUFA arachidonic acid (AA) in human umbilical vein endothelial cells (HUVEC). The mitochondrial membrane potential (MMP) and the production of reactive oxygen species were examined by flow cytometry. Phosphorylation of p53 or p38 MAP kinase, and total levels of p53 were measured by Western blot. DNA binding activity of p53 was analyzed with a TransAM transcription factor assay kit. Tube formation was assessed on Matrigel. In proliferating HUVEC, but not in confluent cells, DHA reduced cell viability and induced apoptosis, as demonstrated by increases in membrane leakage (propidium iodide (PI) staining), Annexin‐V binding, sub G1 phase in the cell cycle, and TUNEL‐positive cells. AA had no effect on these parameters. In addition to a reduced MMP and increased reactive oxygen species, phosphorylation of p38 and p53 (serine 15) and impaired DNA binding of p53 were observed. There was no change in total levels of p53. The p38 inhibitor SB203580 had no effect on Annexin V binding. DHA also attenuated HUVEC tube formation. Taken together, DHA induces apoptosis in proliferating, but not in resting HUVEC, potentially via the phosphorylation of p53, resulting in decreased p53 DNA binding. The results suggest that anti‐angiogenic effects of DHA may be due to induction of apoptosis in proliferating endothelial cells. © 2005 Wiley‐Liss, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cellular Physiology Wiley

Docosahexaenoic acid induces apoptosis in proliferating human endothelial cells

Loading next page...
 
/lp/wiley/docosahexaenoic-acid-induces-apoptosis-in-proliferating-human-zvYU8tEcNK
Publisher
Wiley
Copyright
Copyright © 2005 Wiley‐Liss, Inc., A Wiley Company
ISSN
0021-9541
eISSN
1097-4652
DOI
10.1002/jcp.20351
pmid
15795939
Publisher site
See Article on Publisher Site

Abstract

n‐3 polyunsaturated fatty acids (PUFAs) have been shown to exert beneficial effects in the prevention of cardiovascular disease, inflammation, and on tumor growth. To investigate effects of PUFAs on proliferation and apoptosis in endothelial cells, we tested the n‐3 PUFA docosahexaenoic acid (DHA) and the n‐6 PUFA arachidonic acid (AA) in human umbilical vein endothelial cells (HUVEC). The mitochondrial membrane potential (MMP) and the production of reactive oxygen species were examined by flow cytometry. Phosphorylation of p53 or p38 MAP kinase, and total levels of p53 were measured by Western blot. DNA binding activity of p53 was analyzed with a TransAM transcription factor assay kit. Tube formation was assessed on Matrigel. In proliferating HUVEC, but not in confluent cells, DHA reduced cell viability and induced apoptosis, as demonstrated by increases in membrane leakage (propidium iodide (PI) staining), Annexin‐V binding, sub G1 phase in the cell cycle, and TUNEL‐positive cells. AA had no effect on these parameters. In addition to a reduced MMP and increased reactive oxygen species, phosphorylation of p38 and p53 (serine 15) and impaired DNA binding of p53 were observed. There was no change in total levels of p53. The p38 inhibitor SB203580 had no effect on Annexin V binding. DHA also attenuated HUVEC tube formation. Taken together, DHA induces apoptosis in proliferating, but not in resting HUVEC, potentially via the phosphorylation of p53, resulting in decreased p53 DNA binding. The results suggest that anti‐angiogenic effects of DHA may be due to induction of apoptosis in proliferating endothelial cells. © 2005 Wiley‐Liss, Inc.

Journal

Journal of Cellular PhysiologyWiley

Published: Sep 1, 2005

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off