Do we need land‐cover data to model species distributions in Europe?

Do we need land‐cover data to model species distributions in Europe? Aim To assess the influence of land cover and climate on species distributions across Europe. To quantify the importance of land cover to describe and predict species distributions after using climate as the main driver. Location The study area is Europe. Methods (1) A multivariate analysis was applied to describe land‐cover distribution across Europe and assess if the land cover is determined by climate at large spatial scales. (2) To evaluate the importance of land cover to predict species distributions, we implemented a spatially explicit iterative procedure to predict species distributions of plants (2603 species), mammals (186 species), breeding birds (440 species), amphibian and reptiles (143 species). First, we ran bioclimatic models using stepwise generalized additive models using bioclimatic variables. Secondly, we carried out a regression of land cover (LC) variables against residuals from the bioclimatic models to select the most relevant LC variables. Finally, we produced mixed models including climatic variables and those LC variables selected as decreasing the residual of bioclimatic models. Then we compared the explanatory and predictive power of the pure bioclimatic against the mixed model. Results (1) At the European coarse resolution, land cover is mainly driven by climate. Two bioclimatic axes representing a gradient of temperature and a gradient of precipitation explained most variation of land‐cover distribution. (2) The inclusion of land cover improved significantly the explanatory power of bioclimatic models and the most relevant variables across groups were those not explained or poorly explained by climate. However, the predictive power of bioclimatic model was not improved by the inclusion of LC variables in the iterative model selection process. Main conclusion Climate is the major driver of both species and land‐cover distributions over Europe. Yet, LC variables that are not explained or weakly associated with climate (inland water, sea or arable land) are interesting to describe particular mammal, bird and tree distributions. However, the addition of LC variables to pure bioclimatic models does not improve their predictive accuracy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Biogeography Wiley

Do we need land‐cover data to model species distributions in Europe?

Loading next page...
 
/lp/wiley/do-we-need-land-cover-data-to-model-species-distributions-in-europe-oILEKHeJk4
Publisher
Wiley
Copyright
Copyright © 2004 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0305-0270
eISSN
1365-2699
DOI
10.1046/j.0305-0270.2003.00991.x
Publisher site
See Article on Publisher Site

Abstract

Aim To assess the influence of land cover and climate on species distributions across Europe. To quantify the importance of land cover to describe and predict species distributions after using climate as the main driver. Location The study area is Europe. Methods (1) A multivariate analysis was applied to describe land‐cover distribution across Europe and assess if the land cover is determined by climate at large spatial scales. (2) To evaluate the importance of land cover to predict species distributions, we implemented a spatially explicit iterative procedure to predict species distributions of plants (2603 species), mammals (186 species), breeding birds (440 species), amphibian and reptiles (143 species). First, we ran bioclimatic models using stepwise generalized additive models using bioclimatic variables. Secondly, we carried out a regression of land cover (LC) variables against residuals from the bioclimatic models to select the most relevant LC variables. Finally, we produced mixed models including climatic variables and those LC variables selected as decreasing the residual of bioclimatic models. Then we compared the explanatory and predictive power of the pure bioclimatic against the mixed model. Results (1) At the European coarse resolution, land cover is mainly driven by climate. Two bioclimatic axes representing a gradient of temperature and a gradient of precipitation explained most variation of land‐cover distribution. (2) The inclusion of land cover improved significantly the explanatory power of bioclimatic models and the most relevant variables across groups were those not explained or poorly explained by climate. However, the predictive power of bioclimatic model was not improved by the inclusion of LC variables in the iterative model selection process. Main conclusion Climate is the major driver of both species and land‐cover distributions over Europe. Yet, LC variables that are not explained or weakly associated with climate (inland water, sea or arable land) are interesting to describe particular mammal, bird and tree distributions. However, the addition of LC variables to pure bioclimatic models does not improve their predictive accuracy.

Journal

Journal of BiogeographyWiley

Published: Mar 1, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month