Do postlarval amphidromous fishes transport marine‐derived nutrients and pollutants to Caribbean streams?

Do postlarval amphidromous fishes transport marine‐derived nutrients and pollutants to... Diadromous fishes are known biotransport vectors that can move nutrients, energy and contaminants in an upstream direction in lotic ecosystems. This function has been demonstrated repeatedly in anadromous salmonids, but the role of other diadromous species, especially tropical taxa, as biotransport vectors is less studied. Amphidromous fish species exhibit potential to act as upstream vectors of nutrients and contaminants in their postlarval and juvenile stages, but this role is largely unknown because of limited understanding of larval growth habitats. Moreover, because some species are harvested in artisanal fisheries as postlarvae, and postlarvae are consumed by riverine and estuarine predators, heavy contaminant loads may present a human or wildlife health concern. This research incorporates stable isotope and contaminant analyses to infer larval habitats and contaminant accumulation of amphidromous fishes on the Caribbean island of Puerto Rico. The isotopic signatures of postlarval amphidromous fishes indicated marine basal sources and food web components, rather than those from riverine habitats. Additionally, postlarvae did not contain concentrations of anthropogenic pollutants that would be of ecological or human health concern. These findings are the first and strongest evidence that amphidromous fish postlarvae function as biotransport vectors of marine nutrients into and up river ecosystems without posing a health threat to the receiving food web or human consumers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecology of Freshwater Fish Wiley

Do postlarval amphidromous fishes transport marine‐derived nutrients and pollutants to Caribbean streams?

Loading next page...
 
/lp/wiley/do-postlarval-amphidromous-fishes-transport-marine-derived-nutrients-BphftCisx2
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
ISSN
0906-6691
eISSN
1600-0633
D.O.I.
10.1111/eff.12397
Publisher site
See Article on Publisher Site

Abstract

Diadromous fishes are known biotransport vectors that can move nutrients, energy and contaminants in an upstream direction in lotic ecosystems. This function has been demonstrated repeatedly in anadromous salmonids, but the role of other diadromous species, especially tropical taxa, as biotransport vectors is less studied. Amphidromous fish species exhibit potential to act as upstream vectors of nutrients and contaminants in their postlarval and juvenile stages, but this role is largely unknown because of limited understanding of larval growth habitats. Moreover, because some species are harvested in artisanal fisheries as postlarvae, and postlarvae are consumed by riverine and estuarine predators, heavy contaminant loads may present a human or wildlife health concern. This research incorporates stable isotope and contaminant analyses to infer larval habitats and contaminant accumulation of amphidromous fishes on the Caribbean island of Puerto Rico. The isotopic signatures of postlarval amphidromous fishes indicated marine basal sources and food web components, rather than those from riverine habitats. Additionally, postlarvae did not contain concentrations of anthropogenic pollutants that would be of ecological or human health concern. These findings are the first and strongest evidence that amphidromous fish postlarvae function as biotransport vectors of marine nutrients into and up river ecosystems without posing a health threat to the receiving food web or human consumers.

Journal

Ecology of Freshwater FishWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off