Diurnal temperature range in the Arctic and its relation to hemispheric and Arctic circulation patterns

Diurnal temperature range in the Arctic and its relation to hemispheric and Arctic circulation... The changes of atmospheric circulation patterns in the Northern Hemisphere and in the Arctic for the period 1939–1990 were investigated. For this purpose, the seasonal and annual frequencies of occurrence of W, E and C macrotypes according to the Vangengeim–Girs typology and groups of synoptic processes in the Arctic (A, B, W, G, D and K) according to the Dydina classification have been computed. Spatial and seasonal patterns of the mean diurnal temperature range (DTR) in the Arctic are presented, based on the data from 33 Arctic stations for the period 1951–1990. The relationships between the DTR in the Arctic and the atmospheric circulation changes in the Northern Hemisphere and in the Arctic have been investigated. The seasonal mean DTR for each macrotype of circulation and group of circulation was calculated using daily data from ten Arctic stations for the period 1951–1990. These stations represent all climatic regions and subregions identified by the authors of Atlas Arktiki (1985. Glavnoye Upravlenye Geodeziy i Kartografiy, Moskva, p. 204). In addition, the correlation coefficients between DTR in the Arctic and both the North Atlantic Oscillation Index (NAO) and the Zonal Index (ZI) have been computed. Statistically significant changes of atmospheric circulation in the Northern Hemisphere (mainly in low and moderate latitudes) since the mid‐1970s, which are also reported by other researchers, have been confirmed. In the Arctic, the atmospheric circulation has also undergone changes in recent decades; however, these changes are significantly smaller. Both the annual and the seasonal mean DTR values have been found to be the highest in the centre of the southernmost parts of the Canadian and Russian Arctic and the lowest in the Norwegian Arctic. Based on the seasonal means, four types of annual course of the DTR in the Arctic have been identified. The results pertaining to the relationship between DTR and atmospheric circulation provide some evidence that, in recent decades, both the large‐scale changes of the atmospheric circulation in the Northern Hemisphere and its changes in the Arctic have led to the damping of the cool half‐year DTR in the Arctic. Copyright © 2000 Royal Meteorological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Climatology Wiley

Diurnal temperature range in the Arctic and its relation to hemispheric and Arctic circulation patterns

Loading next page...
 
/lp/wiley/diurnal-temperature-range-in-the-arctic-and-its-relation-to-IinMbkOjE7
Publisher site
See Article on Publisher Site

Abstract

The changes of atmospheric circulation patterns in the Northern Hemisphere and in the Arctic for the period 1939–1990 were investigated. For this purpose, the seasonal and annual frequencies of occurrence of W, E and C macrotypes according to the Vangengeim–Girs typology and groups of synoptic processes in the Arctic (A, B, W, G, D and K) according to the Dydina classification have been computed. Spatial and seasonal patterns of the mean diurnal temperature range (DTR) in the Arctic are presented, based on the data from 33 Arctic stations for the period 1951–1990. The relationships between the DTR in the Arctic and the atmospheric circulation changes in the Northern Hemisphere and in the Arctic have been investigated. The seasonal mean DTR for each macrotype of circulation and group of circulation was calculated using daily data from ten Arctic stations for the period 1951–1990. These stations represent all climatic regions and subregions identified by the authors of Atlas Arktiki (1985. Glavnoye Upravlenye Geodeziy i Kartografiy, Moskva, p. 204). In addition, the correlation coefficients between DTR in the Arctic and both the North Atlantic Oscillation Index (NAO) and the Zonal Index (ZI) have been computed. Statistically significant changes of atmospheric circulation in the Northern Hemisphere (mainly in low and moderate latitudes) since the mid‐1970s, which are also reported by other researchers, have been confirmed. In the Arctic, the atmospheric circulation has also undergone changes in recent decades; however, these changes are significantly smaller. Both the annual and the seasonal mean DTR values have been found to be the highest in the centre of the southernmost parts of the Canadian and Russian Arctic and the lowest in the Norwegian Arctic. Based on the seasonal means, four types of annual course of the DTR in the Arctic have been identified. The results pertaining to the relationship between DTR and atmospheric circulation provide some evidence that, in recent decades, both the large‐scale changes of the atmospheric circulation in the Northern Hemisphere and its changes in the Arctic have led to the damping of the cool half‐year DTR in the Arctic. Copyright © 2000 Royal Meteorological Society

Journal

International Journal of ClimatologyWiley

Published: Mar 15, 2000

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off