1 The effect on sarcomere organization of stretching intact single skeletal muscle fibres by 50% of their optimum length (Lo) during ten consecutive short tetani was investigated. Stretch reduced tetanic force to 36 ± 4% of the pre‐stretch condition. Sarcomere organization was analysed using both electron and confocal microscopy. For confocal microscopy the striation pattern was examined by fluorescently staining F‐actin with rhodamine–phalloidin. 2 Electron microscopy revealed that fibres which had been stretched during contraction contained areas of severe sarcomere disorganization, as well as adjacent sarcomeres of normal appearance. 3 Confocal images of stretched fibres, which had been fixed and stained with rhodamine–phalloidin, showed focal regions of overstretched sarcomeres and regions where sarcomeres of adjacent myofibrils were out of alignment with each other. Analysis of all sarcomeres along the length of fibres showed regions of sarcomere inhomogeneity were distributed throughout the fibre length and cross‐section. 4 Fibres were microinjected with the fluorescent (Ca2+)i indicator fura‐2 before being stretched. Conventional wide‐field fluorescence imaging microscopy showed that the tetanic (Ca2+)i was reduced after stretching but remained uniformly distributed. 5 This study confirms the finding that stretch‐induced muscle injury has components caused by disorganization of the myofibrillar array and by failure of tetanic Ca2+ release. The structural damage is spatially heterogeneous whereas the changes in Ca2+ release appear to be spatially homogeneous.
The Journal of Physiology – Wiley
Published: Aug 1, 1997
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create folders to | ||
Export folders, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.