Distributed containment control for nonlinear multiagent systems in pure‐feedback form

Distributed containment control for nonlinear multiagent systems in pure‐feedback form In this paper, the problem of distributed containment control for pure‐feedback nonlinear multiagent systems under a directed graph topology is investigated. The dynamics of each agent are molded by high‐order nonaffine pure‐feedback form. Neural networks are employed to identify unknown nonlinear functions, and dynamic surface control technique is used to avoid the problem of explosion of complexity inherent in backstepping design procedure. The Frobenius norm of the ideal neural network weighting matrices is estimated, which is helpful to reduce the number of the adaptive tuning law and alleviate the networked communication burden. The proposed distributed containment controllers guarantee that all signals in the closed‐loop systems are cooperatively semiglobally uniformly ultimately bounded, and the outputs of followers are driven into a convex hull spanned by the multiple dynamic leaders. Finally, the effectiveness of the developed method is demonstrated by simulation examples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Robust and Nonlinear Control Wiley

Distributed containment control for nonlinear multiagent systems in pure‐feedback form

Loading next page...
 
/lp/wiley/distributed-containment-control-for-nonlinear-multiagent-systems-in-7i9S4dpQbJ
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
1049-8923
eISSN
1099-1239
D.O.I.
10.1002/rnc.4047
Publisher site
See Article on Publisher Site

Abstract

In this paper, the problem of distributed containment control for pure‐feedback nonlinear multiagent systems under a directed graph topology is investigated. The dynamics of each agent are molded by high‐order nonaffine pure‐feedback form. Neural networks are employed to identify unknown nonlinear functions, and dynamic surface control technique is used to avoid the problem of explosion of complexity inherent in backstepping design procedure. The Frobenius norm of the ideal neural network weighting matrices is estimated, which is helpful to reduce the number of the adaptive tuning law and alleviate the networked communication burden. The proposed distributed containment controllers guarantee that all signals in the closed‐loop systems are cooperatively semiglobally uniformly ultimately bounded, and the outputs of followers are driven into a convex hull spanned by the multiple dynamic leaders. Finally, the effectiveness of the developed method is demonstrated by simulation examples.

Journal

International Journal of Robust and Nonlinear ControlWiley

Published: Jan 10, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off