Diffusion induced void nucleation in SnPb solder joints

Diffusion induced void nucleation in SnPb solder joints Towards a simple and robust model for void‐based fatigue prediction, we investigate the interaction of voids with its surrounding by using a multi‐field method. We couple the concentration fields of tin c1 and lead c2 with an additional field c3, where the latter is assigned with a void field. The interaction potential manifests three stable states. Two are obtained by experimental results of tin‐lead (SnPb) and the void stable state is postulated by construction. The logarithmic form of the thermodynamically consistent configurational entropy is approximated within this study by a fourth order polynom. It has been shown that the interfacial energy coefficient is independent of void's size, but rather depends numerically on the mesh size, which is used in the model presented here. Both governing equations follows a Cahn‐Hilliard‐type equation to mimic the microstructural changes. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings in Applied Mathematics & Mechanics Wiley

Diffusion induced void nucleation in SnPb solder joints

Loading next page...
 
/lp/wiley/diffusion-induced-void-nucleation-in-snpb-solder-joints-eqKTsAYxGh
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2017 Wiley Subscription Services
ISSN
1617-7061
eISSN
1617-7061
D.O.I.
10.1002/pamm.201710256
Publisher site
See Article on Publisher Site

Abstract

Towards a simple and robust model for void‐based fatigue prediction, we investigate the interaction of voids with its surrounding by using a multi‐field method. We couple the concentration fields of tin c1 and lead c2 with an additional field c3, where the latter is assigned with a void field. The interaction potential manifests three stable states. Two are obtained by experimental results of tin‐lead (SnPb) and the void stable state is postulated by construction. The logarithmic form of the thermodynamically consistent configurational entropy is approximated within this study by a fourth order polynom. It has been shown that the interfacial energy coefficient is independent of void's size, but rather depends numerically on the mesh size, which is used in the model presented here. Both governing equations follows a Cahn‐Hilliard‐type equation to mimic the microstructural changes. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Journal

Proceedings in Applied Mathematics & MechanicsWiley

Published: Jan 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off