Diffusion induced void nucleation in SnPb solder joints

Diffusion induced void nucleation in SnPb solder joints Towards a simple and robust model for void‐based fatigue prediction, we investigate the interaction of voids with its surrounding by using a multi‐field method. We couple the concentration fields of tin c1 and lead c2 with an additional field c3, where the latter is assigned with a void field. The interaction potential manifests three stable states. Two are obtained by experimental results of tin‐lead (SnPb) and the void stable state is postulated by construction. The logarithmic form of the thermodynamically consistent configurational entropy is approximated within this study by a fourth order polynom. It has been shown that the interfacial energy coefficient is independent of void's size, but rather depends numerically on the mesh size, which is used in the model presented here. Both governing equations follows a Cahn‐Hilliard‐type equation to mimic the microstructural changes. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings in Applied Mathematics & Mechanics Wiley

Diffusion induced void nucleation in SnPb solder joints

Loading next page...
 
/lp/wiley/diffusion-induced-void-nucleation-in-snpb-solder-joints-eqKTsAYxGh
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2017 Wiley Subscription Services
ISSN
1617-7061
eISSN
1617-7061
D.O.I.
10.1002/pamm.201710256
Publisher site
See Article on Publisher Site

Abstract

Towards a simple and robust model for void‐based fatigue prediction, we investigate the interaction of voids with its surrounding by using a multi‐field method. We couple the concentration fields of tin c1 and lead c2 with an additional field c3, where the latter is assigned with a void field. The interaction potential manifests three stable states. Two are obtained by experimental results of tin‐lead (SnPb) and the void stable state is postulated by construction. The logarithmic form of the thermodynamically consistent configurational entropy is approximated within this study by a fourth order polynom. It has been shown that the interfacial energy coefficient is independent of void's size, but rather depends numerically on the mesh size, which is used in the model presented here. Both governing equations follows a Cahn‐Hilliard‐type equation to mimic the microstructural changes. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Journal

Proceedings in Applied Mathematics & MechanicsWiley

Published: Jan 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial