BACKGROUND: Parvoviridae are small nonenveloped viruses that are known to be highly resistant to physico‐chemical treatments. Because low pH is frequently applied to process intermediates or final products, the impact of such conditions on the human erythrovirus B19 (B19V) and the mouse parvovirus (mice minute virus, MMV) was assessed, which is often used as a model for B19V. Owing to the lack of a suitable cultivation and/or detection system for B19V no such data exist so far. STUDY DESIGN AND METHODS: Virus inactivation was monitored by decrease of infectivity and loss of capsid integrity. Infectious B19V was quantified by dete‐ction of virus‐specific messenger RNA from Ku812Ep6 cells. To measure capsid integrity, endonucleases were added after exposure to low pH and the encapsidated (endonuclease‐protected) virus DNA was quantified by real‐time PCR. RESULTS: B19V was inactivated greater than 5 log after 2 hours at pH 4, whereas MMV was resistant over 9 hours. Infectivity data strongly correlated with data obtained by the endonuclease assay. Capsid disintegra‐tion was observed in immunoglobulin G as well as in different albumin solutions. Temperature and pH showed concerted impact on B19V capsid disintegration. CONCLUSION: Our data show that B19V is much more vulnerable toward low pH conditions than MMV. Together with the previously reported susceptibility of B19V toward wet heat conditions, low pH is the second treatment where erythrovirus B19V is less resistant than viruses from the parvovirus genus.
Transfusion – Wiley
Published: Jul 1, 2004
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create folders to | ||
Export folders, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
PDF Discount | 20% off | |
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
EndNote
Export to EndNoteAll DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.
ok to continue