Access the full text.
Sign up today, get DeepDyve free for 14 days.
Polymer solar cells are conventionally processed by coating a multicomponent mixture containing polymer, fullerene, solvent, and cosolvent. The photovoltaic performance strongly depends on the nanoscale morphology of the blend, which is largely determined by the precise nature of the solvent composition and drying conditions. Here, an alternative processing route is investigated in which the two active layer components are deposited sequentially via spin coating or doctor blading. Spin coating the fullerene from o‐dichlorobenzene on top of the polymer provides virtually identical morphologies and photovoltaic performance. Using blade coating, the influence of the second‐layer solvent for the fullerene derivative is investigated in further detail. Different aromatic solvents are compared regarding swelling of the polymer layer, fullerene solubility, and evaporation rate. It is found that while swelling of the polymer by the second‐layer solvent is a necessity for sequential processing, the solubility of the fullerene derivative in this solvent has the strongest influence on solar cell performance. Homogeneous layers in which a sufficient amount of fullerene can infiltrate the polymer film can only be achieved when solvents are used that have a very high solubility for the fullerene and swell the polymer layer.
Advanced Energy Materials – Wiley
Published: Jul 1, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.