Dental pulp regeneration via cell homing

Dental pulp regeneration via cell homing The typical treatment for irreversibly inflamed/necrotic pulp tissue is root canal treatment. As an alternative approach, regenerative endodontics aims to regenerate dental pulp‐like tissues using two possible strategies: cell transplantation and cell homing. The former requires exogenously transplanted stem cells, complex procedures and high costs; the latter employs the host's endogenous cells to achieve tissue repair/regeneration, which is more clinically translatable. This systematic review examines cell homing for dental pulp regeneration, selecting articles on in vitro experiments, in vivo ectopic transplantation models and in situ pulp revascularization. MEDLINE/PubMed and Scopus databases were electronically searched for articles without limits in publication date. Two reviewers independently screened and included papers according to the predefined selection criteria. The electronic searches identified 46 studies. After title, abstract and full‐text examination, 10 articles met the inclusion criteria. In vitro data highlighted that multiple cytokines have the capacity to induce migration, proliferation and differentiation of dental pulp stem/progenitor cells. The majority of the in vivo studies obtained regenerated connective pulp‐like tissues with neovascularization. In some cases, the samples showed new innervation and new dentine deposition. The in situ pulp revascularization regenerated intracanal pulp‐like tissues with neovascularization, innervation and dentine formation. Cell homing strategies for pulp regeneration need further understanding and improvement if they are to become a reliable and effective approach in endodontics. Nevertheless, cell homing currently represents the most clinically viable pathway for dental pulp regeneration. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Endodontic Journal Wiley

Dental pulp regeneration via cell homing

Loading next page...
 
/lp/wiley/dental-pulp-regeneration-via-cell-homing-10rSza3G0K
Publisher
Wiley
Copyright
Copyright © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd
ISSN
0143-2885
eISSN
1365-2591
D.O.I.
10.1111/iej.12868
Publisher site
See Article on Publisher Site

Abstract

The typical treatment for irreversibly inflamed/necrotic pulp tissue is root canal treatment. As an alternative approach, regenerative endodontics aims to regenerate dental pulp‐like tissues using two possible strategies: cell transplantation and cell homing. The former requires exogenously transplanted stem cells, complex procedures and high costs; the latter employs the host's endogenous cells to achieve tissue repair/regeneration, which is more clinically translatable. This systematic review examines cell homing for dental pulp regeneration, selecting articles on in vitro experiments, in vivo ectopic transplantation models and in situ pulp revascularization. MEDLINE/PubMed and Scopus databases were electronically searched for articles without limits in publication date. Two reviewers independently screened and included papers according to the predefined selection criteria. The electronic searches identified 46 studies. After title, abstract and full‐text examination, 10 articles met the inclusion criteria. In vitro data highlighted that multiple cytokines have the capacity to induce migration, proliferation and differentiation of dental pulp stem/progenitor cells. The majority of the in vivo studies obtained regenerated connective pulp‐like tissues with neovascularization. In some cases, the samples showed new innervation and new dentine deposition. The in situ pulp revascularization regenerated intracanal pulp‐like tissues with neovascularization, innervation and dentine formation. Cell homing strategies for pulp regeneration need further understanding and improvement if they are to become a reliable and effective approach in endodontics. Nevertheless, cell homing currently represents the most clinically viable pathway for dental pulp regeneration.

Journal

International Endodontic JournalWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off