Degradation of Carbon Tetrachloride by nanoscale Zero‐Valent Iron @ magnetic Fe3O4: Impact of reaction condition, Kinetics, Thermodynamics and Mechanism

Degradation of Carbon Tetrachloride by nanoscale Zero‐Valent Iron @ magnetic Fe3O4: Impact of... Nano‐scale zero‐valent Iron (nZVI) attached on the Fe3O4 nanoparticles were prepared and creatively applied in the reductive dechlorination of Carbon Tetrachloride (CT). The characterization results of the synthesized composite indicated a main component of nZVI particles assembled on the surface of Fe3O4 with a layer of iron‐oxide film on the periphery, of which the dispersibility was better and the specific surface area was larger. The effects of different reaction conditions like temperature, initial pH values, Fe0@Fe3O4 dosage and initial CT concentrations on the removal of CT were evaluated. Under the optimum conditions, the Fe0@Fe3O4 composites showed a CT removal efficiency of 89.1% in 60 min, which was much greater than that of nZVI (61.7%) and Fe3O4 particles (14.3%). The removal process obeyed the pseudo‐first‐order kinetic model. Synergy effects of the constituents in the composite which can promote the relative rates of mass transfer to reactive sites were proposed to be existed and the magnetism of Fe3O4 could help to overcome the aggregation and surface passivation problem of nZVI. Thus, Fe0@Fe3O4 nanoparticles in our study can effectively complete the reductive dechlorination of CT and an improved nZVI catalyst is provided for the remediation of chlorinated organic compounds. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Degradation of Carbon Tetrachloride by nanoscale Zero‐Valent Iron @ magnetic Fe3O4: Impact of reaction condition, Kinetics, Thermodynamics and Mechanism

Loading next page...
 
/lp/wiley/degradation-of-carbon-tetrachloride-by-nanoscale-zero-valent-iron-rYC6Yt7dCN
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4139
Publisher site
See Article on Publisher Site

Abstract

Nano‐scale zero‐valent Iron (nZVI) attached on the Fe3O4 nanoparticles were prepared and creatively applied in the reductive dechlorination of Carbon Tetrachloride (CT). The characterization results of the synthesized composite indicated a main component of nZVI particles assembled on the surface of Fe3O4 with a layer of iron‐oxide film on the periphery, of which the dispersibility was better and the specific surface area was larger. The effects of different reaction conditions like temperature, initial pH values, Fe0@Fe3O4 dosage and initial CT concentrations on the removal of CT were evaluated. Under the optimum conditions, the Fe0@Fe3O4 composites showed a CT removal efficiency of 89.1% in 60 min, which was much greater than that of nZVI (61.7%) and Fe3O4 particles (14.3%). The removal process obeyed the pseudo‐first‐order kinetic model. Synergy effects of the constituents in the composite which can promote the relative rates of mass transfer to reactive sites were proposed to be existed and the magnetism of Fe3O4 could help to overcome the aggregation and surface passivation problem of nZVI. Thus, Fe0@Fe3O4 nanoparticles in our study can effectively complete the reductive dechlorination of CT and an improved nZVI catalyst is provided for the remediation of chlorinated organic compounds.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off