Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Decomposition of thermal and dynamic changes in the South China Sea induced by boundary forcing and surface fluxes during 1970–2000

Decomposition of thermal and dynamic changes in the South China Sea induced by boundary forcing... Based on a fully coupled, high‐resolution regional climate model, this study analyzed three‐dimensional temperature and momentum changes in the South China Sea (SCS) from 1970 to 2000, during which period the climate shifts from a decadal La Niña‐like condition (before 1976/1977) to a decadal El Niño‐like condition afterward. With a set of partially coupled experiments, sea surface temperature (SST) and kinetic energy (KE) changes during this period are first decomposed into two components: those induced by lateral boundary forcing and those induced by atmospheric surface fluxes. The results showed that the total SST and KE changes show an increasing trend from 1970 to 2000. The two decomposed components together determined 96 and 89% of the SST and KE changes, respectively, implying their dominant roles on the SCS's surface variability. Spatially, a sandwich pattern of air‐sea forcing relationship is revealed in the SCS basin. The increased KE, represented by a cyclonic flow anomaly in the northern SCS, was induced by enhanced cold water intrusion from Pacific into the SCS via the Luzon Strait (boundary forcing). This cold‐water inflow, however, resulted in SST cooling along the northern shelf of the SCS. The maximal SST warming occurred in the central SCS and was attributed to the wind‐evaporation‐SST (WES) positive feedback (surface forcing), in which a southwestward wind anomaly is initialized by SST gradients between the northern and southern SCS. This wind anomaly decelerates the southwestly summer monsoons and in turn increases the SST gradients. Over the shallow Sunda shelf, which is far from the Luzon Strait, the SST/KE variability appeared to be determined primarily by local air‐sea interactions. Furthermore, analyses on subsurface components indicated that the subsurface temperature changes are primarily induced by internal ocean mixing, which becomes significantly important below the thermocline. The enhanced subsurface flow is driven by the Luzon Strait inflow as well, and exits the SCS via the Mindoro‐Sibutu passage. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Geophysical Research: Oceans Wiley

Decomposition of thermal and dynamic changes in the South China Sea induced by boundary forcing and surface fluxes during 1970–2000

Loading next page...
 
/lp/wiley/decomposition-of-thermal-and-dynamic-changes-in-the-south-china-sea-8tDnaHqLHw
Publisher
Wiley
Copyright
© 2016. American Geophysical Union. All Rights Reserved.
ISSN
2169-9275
eISSN
2169-9291
DOI
10.1002/2016JC012078
Publisher site
See Article on Publisher Site

Abstract

Based on a fully coupled, high‐resolution regional climate model, this study analyzed three‐dimensional temperature and momentum changes in the South China Sea (SCS) from 1970 to 2000, during which period the climate shifts from a decadal La Niña‐like condition (before 1976/1977) to a decadal El Niño‐like condition afterward. With a set of partially coupled experiments, sea surface temperature (SST) and kinetic energy (KE) changes during this period are first decomposed into two components: those induced by lateral boundary forcing and those induced by atmospheric surface fluxes. The results showed that the total SST and KE changes show an increasing trend from 1970 to 2000. The two decomposed components together determined 96 and 89% of the SST and KE changes, respectively, implying their dominant roles on the SCS's surface variability. Spatially, a sandwich pattern of air‐sea forcing relationship is revealed in the SCS basin. The increased KE, represented by a cyclonic flow anomaly in the northern SCS, was induced by enhanced cold water intrusion from Pacific into the SCS via the Luzon Strait (boundary forcing). This cold‐water inflow, however, resulted in SST cooling along the northern shelf of the SCS. The maximal SST warming occurred in the central SCS and was attributed to the wind‐evaporation‐SST (WES) positive feedback (surface forcing), in which a southwestward wind anomaly is initialized by SST gradients between the northern and southern SCS. This wind anomaly decelerates the southwestly summer monsoons and in turn increases the SST gradients. Over the shallow Sunda shelf, which is far from the Luzon Strait, the SST/KE variability appeared to be determined primarily by local air‐sea interactions. Furthermore, analyses on subsurface components indicated that the subsurface temperature changes are primarily induced by internal ocean mixing, which becomes significantly important below the thermocline. The enhanced subsurface flow is driven by the Luzon Strait inflow as well, and exits the SCS via the Mindoro‐Sibutu passage.

Journal

Journal of Geophysical Research: OceansWiley

Published: Nov 1, 2016

Keywords: ; ; ;

References