Data Abstraction for Visualizing Large Time Series

Data Abstraction for Visualizing Large Time Series Numeric time series is a class of data consisting of chronologically ordered observations represented by numeric values. Much of the data in various domains, such as financial, medical and scientific, are represented in the form of time series. To cope with the increasing sizes of datasets, numerous approaches for abstracting large temporal data are developed in the area of data mining. Many of them proved to be useful for time series visualization. However, despite the existence of numerous surveys on time series mining and visualization, there is no comprehensive classification of the existing methods based on the needs of visualization designers. We propose a classification framework that defines essential criteria for selecting an abstraction method with an eye to subsequent visualization and support of users' analysis tasks. We show that approaches developed in the data mining field are capable of creating representations that are useful for visualizing time series data. We evaluate these methods in terms of the defined criteria and provide a summary table that can be easily used for selecting suitable abstraction methods depending on data properties, desirable form of representation, behaviour features to be studied, required accuracy and level of detail, and the necessity of efficient search and querying. We also indicate directions for possible extension of the proposed classification framework. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computer Graphics Forum Wiley

Data Abstraction for Visualizing Large Time Series

Loading next page...
 
/lp/wiley/data-abstraction-for-visualizing-large-time-series-UURmmBZ13D
Publisher
Wiley
Copyright
© 2018 The Eurographics Association and John Wiley & Sons Ltd.
ISSN
0167-7055
eISSN
1467-8659
D.O.I.
10.1111/cgf.13237
Publisher site
See Article on Publisher Site

Abstract

Numeric time series is a class of data consisting of chronologically ordered observations represented by numeric values. Much of the data in various domains, such as financial, medical and scientific, are represented in the form of time series. To cope with the increasing sizes of datasets, numerous approaches for abstracting large temporal data are developed in the area of data mining. Many of them proved to be useful for time series visualization. However, despite the existence of numerous surveys on time series mining and visualization, there is no comprehensive classification of the existing methods based on the needs of visualization designers. We propose a classification framework that defines essential criteria for selecting an abstraction method with an eye to subsequent visualization and support of users' analysis tasks. We show that approaches developed in the data mining field are capable of creating representations that are useful for visualizing time series data. We evaluate these methods in terms of the defined criteria and provide a summary table that can be easily used for selecting suitable abstraction methods depending on data properties, desirable form of representation, behaviour features to be studied, required accuracy and level of detail, and the necessity of efficient search and querying. We also indicate directions for possible extension of the proposed classification framework.

Journal

Computer Graphics ForumWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off